Skip to main content
Log in

Recent Advances of Gold Nanoparticles in Biomedical Applications: State of the Art

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Nanomedicine is one of the growing fields that presents new techniques for cancer diagnosis and treatment. Gold nanoparticles (GNPs) are considered as an important class of nanomaterials that possess superior physicochemical properties that make them valuable in medical applications. Unique optical properties of GNPs and their utility in photothermal and radiotherapy have extended a new platform for early detection and treatment of cancer, lately. Nanostructures based on GNPs are nontoxic and biocompatible with a large surface area that makes it possible to modify their surface with different chemicals including different polymers, antibodies, and even drug molecules. Therefore, they are utilized for targeted drug delivery in order to carry drugs and selectively release them in desired tissues which reduces destructive effects on healthy cells while it elevates the drug dose in cancerous ones. This review mainly covers the basic properties of GNPs, their synthesis methods, and focuses on surface modification of these nanoparticles and their diagnosis and therapeutic applications in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Xu, X., Ho, W., Zhang, X., Bertrand, N., & Farokhzad, O. (2015). Cancer nanomedicine: from targeted delivery to combination therapy, (in Eng). Trends in Molecular Medicine, 21(4), 223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wicki, A., Witzigmann, D., Balasubramanian, V., & Huwyler, J. (2015). Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. Journal of Controlled Release, 200(Supplement C), 138–157.

    Article  CAS  PubMed  Google Scholar 

  3. Panahi, Y. et al. (2017). Preparation, surface properties, and therapeutic applications of gold nanoparticles in biomedicine, (in Eng). Drug Research (Stuttgart), 11(02), 77–87.

    Google Scholar 

  4. Chhour, P. et al. (2016). Labeling monocytes with gold nanoparticles to track their recruitment in atherosclerosis with computed tomography. Biomaterials, 87, 93–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fratoddi, I., Venditti, I., Cametti, C., & Russo, M. V. (2015). How toxic are gold nanoparticles? The state-of-the-art. Nano Research, 8(6), 1771–1799.

    Article  CAS  Google Scholar 

  6. Cruje, C., & Chithrani, B. D. (2015). Integration of peptides for enhanced uptake of PEGylayed gold nanoparticles. Journal of Nanoscience and Nanotechnology, 15(3), 2125–2131.

    Article  CAS  PubMed  Google Scholar 

  7. Mieszawska, A. J., Mulder, W. J., Fayad, Z. A., & Cormode, D. P. (2013). Multifunctional gold nanoparticles for diagnosis and therapy of disease. Molecular Pharmaceutics, 10(3), 831–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yameen, B., Choi, W. I., Vilos, C., Swami, A., Shi, J., & Farokhzad, O. C. (2014). Insight into nanoparticle cellular uptake and intracellular targeting. Journal of Controlled Release, 190, 485–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Locatelli, E. (2014). Synthesis and surface modification of silver and gold nanoparticles. Nanomedicine applications against Glioblastoma Multiforme. Alma Mater Studiorumalma. 109.

  10. Yeh, Y.-C., Creran, B., & Rotello, V. M. (2012). Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale, 4(6), 1871–1880.

    Article  CAS  PubMed  Google Scholar 

  11. Huang, X., & El-Sayed, M. A. (2010). Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of Advanced Research, 1(1), 13–28.

    Article  Google Scholar 

  12. Amendola, V., Pilot, R., Frasconi, M., Maragò, O. M., & Iatì, M. A. (2017). Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics: Condensed Matter, 29(20), 203002.

    PubMed  Google Scholar 

  13. Cheng, S., Hideshima, S., Kuroiwa, S., Nakanishi, T., & Osaka, T. (2015). Label-free detection of tumor markers using field effect transistor (FET)-based biosensors for lung cancer diagnosis. Sensors and Actuators B: Chemical, 212, 329–334.

    Article  CAS  Google Scholar 

  14. Amendola, V. et al. (2014). Physico-chemical characteristics of gold nanoparticles. In R. Gonzalo, A. Sánchez (Ed.) Comprehensive analytical chemistry, vol. 66 (pp. 81−152). Elsevier: United States of America.

  15. Cunningham, A., & Bürgi, T. (2013). Bottom-up organisation of metallic nanoparticles. In C. Rockstuhl, T. Scharf, (eds.) Amorphous nanophotonics. (pp. 1–37). Berlin, Germany: Springer.

    Google Scholar 

  16. Shah, M., et al. (2014). Gold nanoparticles: various methods of synthesis and antibacterial applications. Frontiers in Bioscience, 19(1320), 10.2741.

    Google Scholar 

  17. Singh, M., Manikandan, S., & Kumaraguru, A. (2011). Nanoparticles: a new technology with wide applications. Research Journal of Nanoscience and Nanotechnology, 1(1), 1–11.

    Article  CAS  Google Scholar 

  18. Zare, D., Akbarzadeh, A., & Bararpour, N. (2010). Synthesis and functionalization of gold nanoparticles by using of poly functional amino acids. International Journal of Nanoscience and Nanotechnology, 6(4), 223–230.

    Google Scholar 

  19. Mieszawska, A. J., Mulder, W. J. M., Fayad, Z. A., & Cormode, D. P., "Multifunctional Gold Nanoparticles for Diagnosis and Therapy of Disease," Molecular Pharmaceutics, vol. 10, no. 3, pp. 831-847, 2013/03/04 2013.

  20. Herizchi, R., Abbasi, E., Milani, M., & Akbarzadeh, A. (2016). Current methods for synthesis of gold nanoparticles, (in Eng). Artificial Cells, Nanomedicine, and Biotechnology, 44(2), 596–602.

    Article  CAS  PubMed  Google Scholar 

  21. Li, Y. (2011). Mechanistic insight into the Brust-Schiffrin two-phase method for organochalcogenate-protected metal nanoparticles. Georgetown University, Department of Chemistry.

  22. Piella, J., Bastús, N. G., & Puntes, V. (2016). Size-controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties. Chemistry of Materials, 28(4), 1066–1075.

    Article  CAS  Google Scholar 

  23. Carbó-Argibay, E., & Rodríguez-González, B. (2016). Controlled growth of colloidal gold nanoparticles: single-crystalline versus multiply-twinned particles. Israel Journal of Chemistry, 56(4), 214–226.

    Article  CAS  Google Scholar 

  24. Jiali, N., Tao, Z., & Zhongfan, L. (2007). One-step seed-mediated growth of 30–150 nm quasispherical gold nanoparticles with 2-mercaptosuccinic acid as a new reducing agent. Nanotechnology, 18(32), 325607.

    Article  CAS  Google Scholar 

  25. Annadhasan, M., Kasthuri, J., & Rajendiran, N. (2015). Green synthesis of gold nanoparticles under sunlight irradiation and their colorimetric detection of Ni2+and Co2+ions. RSC Advances, 5(15), 11458–11468. https://doi.org/10.1039/C4RA14034F.

    Article  CAS  Google Scholar 

  26. Yu, J., Xu, D., Guan, H. N., Wang, C., Huang, L. K., & Chi, D. F. (2016). Facile one-step green synthesis of gold nanoparticles using Citrus maxima aqueous extracts and its catalytic activity. Materials Letters, 166, 110–112.

    Article  CAS  Google Scholar 

  27. Maddinedi, Sb, Mandal, B. K., Ranjan, S., & Dasgupta, N. (2015). Diastase assisted green synthesis of size-controllable gold nanoparticles. RSC Advances, 5(34), 26727–26733. https://doi.org/10.1039/C5RA03117F.

    Article  CAS  Google Scholar 

  28. DeLong, R. K., Reynolds, C. M., Malcolm, Y., Schaeffer, A., Severs, T., & Wanekaya, A. (2010). Functionalized gold nanoparticles for the binding, stabilization, and delivery of therapeutic DNA, RNA, and other biological macromolecules. Nanotechnology, Science and Applications, 3, 53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Suk, J. S., Xu, Q., Kim, N., Hanes, J., & Ensign, L. M. (2016). PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced Drug Delivery Reviews, 99, 28–51.

    Article  CAS  PubMed  Google Scholar 

  30. Ajnai, G., Chiu, A., Kan, T., Cheng, C.-C., Tsai, T.-H., & Chang, J. (2014). Trends of gold nanoparticle-based drug delivery system in cancer therapy. Journal of Experimental & Clinical Medicine, 6(6), 172–178.

    Article  CAS  Google Scholar 

  31. Muddineti, O. S., Ghosh, B., & Biswas, S. (2015). Current trends in using polymer coated gold nanoparticles for cancer therapy. International Journal of pharmaceutics, 484(1−2), 252–267.

    Article  CAS  PubMed  Google Scholar 

  32. Chen, Y.-H., et al. (2007). Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Molecular Pharmaceutics, 4(5), 713–722.

    Article  CAS  PubMed  Google Scholar 

  33. Kumar, A., et al. (2014). Neuropilin-1-targeted gold nanoparticles enhance therapeutic efficacy of platinum (IV) drug for prostate cancer treatment. ACS Nano, 8(5), 4205–4220.

    Article  CAS  PubMed  Google Scholar 

  34. Stiufiuc, R., et al. (2013). One-step synthesis of PEGylated gold nanoparticles with tunable surface charge. Journal of Nanomaterials, 2013, 88.

    Article  CAS  Google Scholar 

  35. Liu, H., et al. (2015). Control of surface ligand density on PEGylated gold nanoparticles for optimized cancer cell uptake. Particle & Particle Systems Characterization, 32(2), 197–204.

    Article  CAS  Google Scholar 

  36. Conde, J., Tian, F., Baptista, P. V., & Jesús, M. (2014). Multifunctional gold nanocarriers for cancer theranostics: from bench to bedside and back again?. In M. J. Alonso, M. Garcia-Fuentes, (eds.) In Nano-Oncologicals. (pp. 295–328). Berlin, Germany: Springer.

    Google Scholar 

  37. Kumar, A., Boruah, B. M., & Liang, X.-J. (2011). Gold nanoparticles: promising nanomaterials for the diagnosis of cancer and HIV/AIDS. Journal of Nanomaterials, 2011, 22.

    Google Scholar 

  38. Raghavendra, R., Arunachalam, K., Annamalai, S. K., & Aarrthy, M. (2014). Diagnostics and therapeutic application of gold nanoparticles. Medicine (Bio Diagnostics, Drug Delivery and Cancer Therapy), 2, 4.

    Google Scholar 

  39. Lu, F., Doane, T. L., Zhu, J.-J., & Burda, C. (2012). Gold nanoparticles for diagnostic sensing and therapy. Inorganica Chimica Acta, 393, 142–153.

    Article  CAS  Google Scholar 

  40. Cordeiro, M., Ferreira Carlos, F., Pedrosa, P., Lopez, A., & Baptista, P. V. (2016). Gold nanoparticles for diagnostics: advances towards points of care. Diagnostics, 6(4), 43.

    Article  CAS  PubMed Central  Google Scholar 

  41. Kang, J. W., So, P. T. C., Dasari, R. R., & Lim, D.-K. (2015). High resolution live cell Raman imaging using subcellular organelle-targeting SERS-sensitive gold nanoparticles with highly narrow intra-nanogap. Nano Letters, 15(3), 1766–1772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ma, X., et al. (2013). Graphene oxide wrapped gold nanoparticles for intracellular Raman imaging and drug delivery. Journal of Materials Chemistry B, 1(47), 6495–6500. https://doi.org/10.1039/C3TB21385D.

    Article  CAS  Google Scholar 

  43. Ma, J., Liu, Y., Gao, P. F., Zou, H. Y., & Huang, C. Z. (2016). Precision improvement in dark-field microscopy imaging by using gold nanoparticles as an internal reference: a combined theoretical and experimental study. Nanoscale, 8(16), 8729–8736. https://doi.org/10.1039/C5NR08837B.

    Article  CAS  PubMed  Google Scholar 

  44. Jin, H.-Y., Li, D.-W., Zhang, N., Gu, Z., & Long, Y.-T. (2015). Analyzing carbohydrate–protein interaction based on single plasmonic nanoparticle by conventional dark field microscopy. ACS Applied Materials & Interfaces, 7(22), 12249–12253.

    Article  CAS  Google Scholar 

  45. Qian, W., Huang, X., Kang, B., & El-Sayed, M. A. (2010). Dark-field light scattering imaging of living cancer cell component from birth through division using bioconjugated gold nanoprobes. Journal of Biomedical Optics, 15(4), 046025–046025-9.

    Article  CAS  PubMed  Google Scholar 

  46. Mallidi, S., Luke, G. P., & Emelianov, S. (2011). Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends in Biotechnology, 29(5), 213–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, W., & Chen, X. (2015). Gold nanoparticles for photoacoustic imaging. Nanomedicine, 10(2), 299–320.

    Article  CAS  PubMed  Google Scholar 

  48. Song, J., et al. (2016). “Smart” gold nanoparticles for photoacoustic imaging: an imaging contrast agent responsive to the cancer microenvironment and signal amplification via pH-induced aggregation. Chemical Communications, 52(53), 8287–8290.

    Article  CAS  PubMed  Google Scholar 

  49. Poon, W., Heinmiller, A., Zhang, X., & Nadeau, J. L. (2015). Determination of biodistribution of ultrasmall, near-infrared emitting gold nanoparticles by photoacoustic and fluorescence imaging. Journal of Biomedical Optics, 20(6), 066007.

    Article  PubMed  Google Scholar 

  50. Sun, I.-C., Dumani, D., & Emelianov, S. Y., "Ultrasound-guided photoacoustic imaging of lymph nodes with biocompatible gold nanoparticles as a novel contrast agent (Conference Presentation)," in Colloidal Nanoparticles for Biomedical Applications XII, 2017, vol. 10078, p. 100780E: International Society for Opticsand Photonics.

  51. Kim, J., Lee, N., & Hyeon, T. (2017). Recent development of nanoparticles for molecular imaging. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375, 2107.

  52. Na, H. B., Song, I. C., & Hyeon, T. (2009). Inorganic nanoparticles for MRI contrast agents. Advanced Materials, 21(21), 2133–2148.

    Article  CAS  Google Scholar 

  53. Meir, R., et al. (2015). Nanomedicine for cancer immunotherapy: tracking cancer-specific T-cells in vivo with gold nanoparticles and CT imaging. ACS Nano, 9(6), 6363–6372.

    Article  CAS  PubMed  Google Scholar 

  54. Cao, Y., et al. (2015). Targeted CT imaging of human hepatocellular carcinoma using low-generation dendrimer-entrapped gold nanoparticles modified with lactobionic acid. Journal of Materials Chemistry B, 3(2), 286–295. https://doi.org/10.1039/C4TB01542H.

    Article  CAS  Google Scholar 

  55. Lorusso, D., Bria, E., Costantini, A., Di Maio, M., Rosti, G., & Mancuso, A. (2017). Patients’ perception of chemotherapy side effects: Expectations, doctor–patient communication and impact on quality of life–An Italian survey. European Journal of Cancer Care, 26(2), e12618.

    Article  Google Scholar 

  56. Kumar, A., Zhang, X., & Liang, X.-J. (2013). Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnology Advances, 31(5), 593–606.

    Article  CAS  PubMed  Google Scholar 

  57. Ghosh, P., Han, G., De, M., Kim, C. K., & Rotello, V. M. (2008). Gold nanoparticles in delivery applications. Advanced Drug Delivery Reviews, 60(11), 1307–1315.

    Article  CAS  PubMed  Google Scholar 

  58. Lipka, J., et al. (2010). Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials, 31(25), 6574–6581.

    Article  CAS  PubMed  Google Scholar 

  59. Truong, N. P., Whittaker, M. R., Mak, C. W., & Davis, T. P. (2015). The importance of nanoparticle shape in cancer drug delivery. Expert Opinion on Drug delivery, 12(1), 129–142.

    Article  CAS  PubMed  Google Scholar 

  60. Kel, A. E., et al. (2016). Multi-omics “upstream analysis” of regulatory genomic regions helps identifying targets against methotrexate resistance of colon cancer. EuPA Open Proteomics, 13, 1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rizk, N., Christoforou, N., & Lee, S. (2016). Optimization of anti-cancer drugs and a targeting molecule on multifunctional gold nanoparticles. Nanotechnology, 27(18), 185704.

    Article  CAS  PubMed  Google Scholar 

  62. Heo, D. N., et al. (2012). Gold nanoparticles surface-functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy. Biomaterials, 33(3), 856–866.

    Article  CAS  PubMed  Google Scholar 

  63. Lin, W., et al. (2017). pH-responsive unimolecular micelle-gold nanoparticles-drug nanohybrid system for cancer theranostics. Acta Biomaterialia, 58, 455–465. 2017/08/01/.

    Article  CAS  PubMed  Google Scholar 

  64. Zou, L., et al. (2016). Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics, 6(6), 762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, J.-L., & Gu, M. (2010). Gold-nanoparticle-enhanced cancer photothermal therapy. IEEE Journal of Selected Topics in Quantum Electronics, 1(4), 989–996.

    Google Scholar 

  66. Abadeer, N. S., & Murphy, C. J. (2016). Recent progress in cancer thermal therapy using gold nanoparticles. The Journal of Physical Chemistry C, 120(9), 4691–4716.

    Article  CAS  Google Scholar 

  67. Cheng, X., Sun, R., Yin, L., Chai, Z., Shi, H., & Gao, M. (2017). Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo. Advanced Materials, 29(6), 1604894.

    Article  CAS  Google Scholar 

  68. Hwang, S., Nam, J., Jung, S., Song, J., Doh, H., & Kim, S. (2014). Gold nanoparticle-mediated photothermal therapy: current status and future perspective. Nanomedicine, 9(13), 2003–2022.

    Article  CAS  PubMed  Google Scholar 

  69. Yu, M., Guo, F., Wang, J., Tan, F., & Li, N. (2015). Photosensitizer-loaded pH-responsive hollow gold nanospheres for single light-induced photothermal/photodynamic therapy. ACS Applied Materials & Interfaces, 7(32), 17592–17597.

    Article  CAS  Google Scholar 

  70. Ling-Yu, B., et al. (2015). Multifunctional magnetic-hollow gold nanospheres for bimodal cancer cell imaging and photothermal therapy. Nanotechnology, 26(31), 315701.

    Article  CAS  Google Scholar 

  71. Haume, K., et al. (2016). Gold nanoparticles for cancer radiotherapy: a review. Cancer Nanotechnology, 7(1), 8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cooper, D. R., Bekah, D., & Nadeau, J. L., "Gold nanoparticles and their alternatives for radiation therapy enhancement," (in English), Frontiers in Chemistry, Review vol. 2, no. 86, 2014-October-14 2014.

  73. Her, S., Jaffray, D. A., & Allen, C. (2015). Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Advanced Drug Delivery Reviews, 109, 84–101.

    Article  CAS  PubMed  Google Scholar 

  74. Dou, Y., et al. (2016). Size-tuning ionization to optimize gold nanoparticles for simultaneous enhanced CT imaging and radiotherapy. Acs Nano, 10(2), 2536–2548.

    Article  CAS  PubMed  Google Scholar 

  75. Guo, M., Sun, Y., & Zhang, X.-D. (2017). Enhanced radiation therapy of gold nanoparticles in liver cancer. Applied Sciences, 7(3), 232.

    Article  CAS  Google Scholar 

  76. Ma, N., et al. (2017). Shape-dependent radiosensitization effect of gold nanostructures in cancer radiotherapy: comparison of gold nanoparticles, nanospikes, and nanorods. ACS Applied Materials & interfaces, 9(15), 13037–13048.

    Article  CAS  Google Scholar 

  77. Hainfeld, J. F., & Smilowitz, H. M. (2015). Abstract 1807: Nuclear targeted gold nanoparticles for radiation enhancement. Cancer Research, 75(15 Supplement), 1807–1807.

    Google Scholar 

  78. Popovtzer, A., et al. (2016). Actively targeted gold nanoparticles as novel radiosensitizer agents: an in vivo head and neck cancer model. Nanoscale, 8(5), 2678–2685.

    Article  CAS  PubMed  Google Scholar 

  79. Liang, G., Jin, X., Zhang, S., & Xing, D. (2017). RGD peptide-modified fluorescent gold nanoclusters as highly efficient tumor-targeted radiotherapy sensitizers. Biomaterials, 144, 95–104.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is funded by the 2017 Biotechnology Research Center, Tabriz University of Medical Sciences Grant. The authors would like to express their appreciation to Soodabeh Davaran and Ebrahim Mostafavi for their kind support and assistance with this review.

Author contributions

A.A. and M.F. conceived the study and participated in its design and coordination. N.S.A. participated in the sequence alignment and drafted the manuscript. S.D. and E.M. revised the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolfazl Akbarzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aminabad, N.S., Farshbaf, M. & Akbarzadeh, A. Recent Advances of Gold Nanoparticles in Biomedical Applications: State of the Art. Cell Biochem Biophys 77, 123–137 (2019). https://doi.org/10.1007/s12013-018-0863-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-018-0863-4

Keywords

Navigation