Skip to main content
Log in

Nucleic Acid-Dependent Conformational Changes in CRISPR–Cas9 Revealed by Site-Directed Spin Labeling

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

In a type II clustered regularly interspaced short palindromic repeats (CRISPR) system, RNAs that are encoded at the CRISPR locus complex with the CRISPR-associated (Cas) protein Cas9 to form an RNA-guided nuclease that cleaves double-stranded DNAs at specific sites. In recent years, the CRISPR–Cas9 system has been successfully adapted for genome engineering in a wide range of organisms. Studies have indicated that a series of conformational changes in Cas9, coordinated by the RNA and the target DNA, direct the protein into its active conformation, yet details on these conformational changes, as well as their roles in the mechanism of function of Cas9, remain to be elucidated. Here, nucleic acid-dependent conformational changes in Streptococcus pyogenes Cas9 (SpyCas9) were investigated using the method of site-directed spin labeling (SDSL). Single nitroxide spin labels were attached, one at a time, at one of the two native cysteine residues (Cys80 and Cys574) of SpyCas9, and the spin-labeled proteins were shown to maintain their function. X-band continuous-wave electron paramagnetic resonance spectra of the nitroxide attached at Cys80 revealed conformational changes of SpyCas9 that are consistent with a large-scale domain re-arrangement upon binding to its RNA partner. The results demonstrate the use of SDSL to monitor conformational changes in CRISPR–Cas9, which will provide key information for understanding the mechanism of CRISPR function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. van der Oost, J., Westra, E. R., Jackson, R. N., & Wiedenheft, B. (2014). Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nature Reviews Microbiology, 12, 479–492.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sontheimer, E. J., & Barrangou, R. (2015). The bacterial origins of the CRISPR genome-editing revolution. Human Gene Therapy, 26, 413–424.

    Article  CAS  PubMed  Google Scholar 

  3. Marraffini, L. A. (2015). CRISPR-Cas immunity in prokaryotes. Nature, 526, 55–61.

    Article  CAS  PubMed  Google Scholar 

  4. Makarova, K. S., Wolf, Y. I., Alkhnbashi, O. S., Costa, F., Shah, S. A., Saunders, S. J., et al. (2015). An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology, 13, 722–736.

    Article  CAS  PubMed  Google Scholar 

  5. Jiang, F., & Doudna, J. A. (2015). The structural biology of CRISPR-Cas systems. Current Opinion in Structural Biology, 30, 100–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821.

    Article  CAS  PubMed  Google Scholar 

  7. Gasiunas, G., Barrangou, R., Horvath, P., & Siksnys, V. (2012). Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences, 109, E2579–E2586.

    Article  CAS  Google Scholar 

  8. Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., et al. (2013). RNA-guided human genome engineering via Cas9. Science, 339, 823–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Doudna, J. A., & Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346, 1258096.

    Article  PubMed  Google Scholar 

  11. Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157, 1262–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nishimasu, H., Ran, F. A., Hsu, Patrick D., Konermann, S., Shehata, Soraya I., Dohmae, N., et al. (2014). Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 156, 935–949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jinek, M., Jiang, F., Taylor, D. W., Sternberg, S. H., Kaya, E., Ma, E., et al. (2014). Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 343, 1247997.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C., & Doudna, J. A. (2014). DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 507, 62–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anders, C., Niewoehner, O., Duerst, A., & Jinek, M. (2014). Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature, 513, 569–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nishimasu, H., Cong, L., Yan, Winston X., Ran, F. A., Zetsche, B., Li, Y., et al. (2015). Crystal Structure of Staphylococcus aureus Cas9. Cell, 162, 1113–1126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang, F., Zhou, K., Ma, L., Gressel, S., & Doudna, J. A. (2015). A Cas9–guide RNA complex preorganized for target DNA recognition. Science, 348, 1477–1481.

    Article  CAS  PubMed  Google Scholar 

  18. Sternberg, S. H., LaFrance, B., Kaplan, M., & Doudna, J. A. (2015). Conformational control of DNA target cleavage by CRISPR–Cas9. Nature, 527, 110–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jiang, F., Taylor, D. W., Chen, J. S., Kornfeld, J. E., Zhou, K., Thompson, A. J., et al. (2016). Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science, 351, 867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hubbell, W. L., Lopez, C. J., Altenbach, C., & Yang, Z. (2013). Technological advances in site-directed spin labeling of proteins. Current Opinion in Structural Biology, 23, 725–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ding, Y., Nguyen, P., Tangprasertchai, N. S., Reyes, C. V., Zhang, X., & Qin, P. Z. (2015). Electron Paramagnetic Resonance. The Royal Society of Chemistry, 24, 122–147.

    CAS  Google Scholar 

  22. Hubbell, W. L., Cafiso, D. S., & Altenbach, C. (2000). Identifying conformational changes with site-directed spin labeling. Natural Structural Biology, 7, 735–739.

    Article  CAS  Google Scholar 

  23. Fanucci, G. E., & Cafiso, D. S. (2006). Recent Advances and applications of site-directed spin labeling. Current Opinion in Structural Biology, 16, 644–653.

    Article  CAS  PubMed  Google Scholar 

  24. Voinov, M. A., & Smirnov, A. I. (2015). Ionizable nitroxides for studying local electrostatic properties of lipid bilayers and protein systems by EPR. Methods in Enzymology, 564, 191–217.

  25. Smirnova, T. I., & Smirnov, A. I. (2015). Peptide-membrane interactions by spin-labeling EPR. Methods in Enzymology, 564, 219–258.

  26. Sowa, G. Z., & Qin, P. Z. (2008). Site-directed spin labeling studies on nucleic acid structure and dynamics. Progress in Nucleic Acid Research and Molecular Biology, 82, 147–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reginsson, G. W., & Schiemann, O. (2011). Studying biomolecular complexes with pulsed electron-electron double resonance spectroscopy. Biochemical Society Transactions, 39, 128–139.

    Article  CAS  PubMed  Google Scholar 

  28. Yang, Z., Kurpiewski, M. R., Ji, M., Townsend, J. E., Mehta, P., Jen-Jacobson, L., & Saxena, S. (2012). ESR spectroscopy identifies inhibitory Cu2+ sites in a DNA-modifying enzyme to reveal determinants of catalytic specificity. Proceedings of the National Academy of Sciences, 109, E993–E1000.

    Article  CAS  Google Scholar 

  29. Shelke, S. A., & Sigurdsson, S. T. (2012). Site-Directed Spin Labelling of Nucleic Acids. European Journal of Organic Chemistry, 2012, 2291–2301.

    Article  CAS  Google Scholar 

  30. Krstic, I., Endeward, B., Margraf, D., Marko, A., & Prisner, T. F. (2012). Structure and dynamics of nucleic acids. Topics in Current Chemistry, 321, 159–198.

    Article  CAS  PubMed  Google Scholar 

  31. Ishii, T. M., Zerr, P., Xia, X.-M., Bond, C. T., Maylie, J., & Adelman, J. P. (1998). Methods in Enzymology (Vol. 293, pp. 53–71). New York: Academic Press.

    Google Scholar 

  32. Fang, Y., Cai, Q., & Qin, P. Z. (2005). The procapsid binding domain of phi29 packaging RNA has a modular architecture and requires 2′-hydroxyl groups in packaging RNA interaction. Biochemistry, 44, 9348–9358.

    Article  CAS  PubMed  Google Scholar 

  33. Qin, P. Z., Haworth, I. S., Cai, Q., Kusnetzow, A. K., Grant, G. P. G., Price, E. A., et al. (2007). Measuring nanometer distances in nucleic acids using a sequence-independent nitroxide probe. Nature Protocols, 2, 2354–2365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tangprasertchai, N. S., Zhang, X., Ding, Y., Tham, K., Rohs, R., Haworth, I. S., & Qin, P. Z. (2015). An integrated spin-labeling/computational-modeling approach for mapping global structures of nucleic acids. Methods in Enzymology, 564, 427–453.

  35. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., et al. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150, 76–85.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, X., Cekan, P., Sigurdsson, S. T., & Qin, P. Z. (2009). Studying RNA using site-directed spin-labeling and continuous-wave electron paramagnetic resonance spectroscopy. Method Enzymol., 469, 303–328.

    Article  CAS  Google Scholar 

  37. Altenbach, C., López, C. J., Hideg, K., & Hubbell, W. L. (2015). Exploring structure, dynamics, and topology of nitroxide spin-labeled proteins using continuous-wave electron paramagnetic resonance spectroscopy. Methods in Enzymology, 564, 59–100.

  38. Mchaourab, H. S., Lietzow, M. A., Hideg, K., & Hubbell, W. L. (1996). Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. Biochemistry, 35, 7692–7704.

    Article  CAS  PubMed  Google Scholar 

  39. Josephs, E. A., Kocak, D. D., Fitzgibbon, C. J., McMenemy, J., Gersbach, C. A., & Marszalek, P. E. (2015). Structure and specificity of the RNA-guided endonuclease Cas9 during DNA interrogation, target binding and cleavage. Nucleic Acids Research, 43, 8924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Szczelkun, M. D., Tikhomirova, M. S., Sinkunas, T., Gasiunas, G., Karvelis, T., Pschera, P., et al. (2014). Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proceedings of the National Academy of Sciences, 111, 9798–9803.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported, in part, by the National Science Foundation (P.Z.Q., CHE-1213673) and the National Institutes of Health (P.Z.Q., RR028992). Research in RR’s lab was supported by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under the Grant Number P20GM103640 and partly by a grant from the Research Council of the University of Oklahoma Norman Campus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Z. Qin.

Additional information

Carolina Vazquez Reyes and Narin S. Tangprasertchai have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vazquez Reyes, C., Tangprasertchai, N.S., Yogesha, S.D. et al. Nucleic Acid-Dependent Conformational Changes in CRISPR–Cas9 Revealed by Site-Directed Spin Labeling. Cell Biochem Biophys 75, 203–210 (2017). https://doi.org/10.1007/s12013-016-0738-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-016-0738-5

Keywords

Navigation