Skip to main content
Log in

Kurarinone Synergizes TRAIL-Induced Apoptosis in Gastric Cancer Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been identified as a promising anti-tumor agent against in a variety of cancers. However, gastric cancer cells are less sensitive than other cancer cells to TRAIL-induced apoptosis. Here, we combined TRAIL with kurarinone, a natural compound, to induce apoptosis in gastric cancer cell lines SGC7901. After the cells were treated with TRAIL and/or kurarinone, the cell viability and apoptosis were examined by MTT and flow cytometry, respectively. The expression of apoptosis-associated proteins was determined by western blot and q-RT-PCR. Kurarinone at low concentration significantly potentiated the cytotoxic effect of TRAIL by enhancing apoptosis as well as cell cycle arrest at G2/Mphase. The enhancement of apoptosis TRAIL induced by kurarinone involved downregulation of anti-apoptotic proteins Mcl-1 and c-FLIP as well as inhibition of STAT3 signaling. Moreover, we found that STAT3 inhibitor could synergistically enhanced TRAIL-induced apoptosis, similar to kurarinone. Kurarinone synergizes TRAIL-induced apoptosis in human gastric cancer cells. The synergistic effect between these two drugs is associated with downregulation of Mcl-1 and c-FLIP via inhibiting STAT3 signaling. The combination of TRAIL and kurarinone might be an effective regimen for the treatment of advanced gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics, CA: A cancer. Journal for Clinicians, 61, 69–90.

  2. Shin, A., Kim, J., & Park, S. (2011). Gastric cancer epidemiology in Korea. Journal of Gastric Cancer, 11, 135–140.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Bilici, A., Selcukbiricik, F., Demir, N., Oven Ustaalioglu, B. B., Dikilitas, M., & Yildiz, O. (2014). Modified docetaxel and cisplatin in combination with capecitabine (DCX) as a first-line treatment in HER2-negative advanced gastric cancer. Asian Pacific Journal of Cancer Prevention: APJCP, 15, 8661–8666.

  4. Liu, J., Qu, X. J., Xu, L., Zang, Y., Qu, J. L., Hou, K. Z., & Liu, Y. P. (2010). Bortezomib synergizes TRAIL-induced apoptosis in gastric cancer cells. Digestive Diseases and Sciences, 55, 3361–3368.

    Article  CAS  PubMed  Google Scholar 

  5. Smyth, E. C., & Cunningham, D. (2012). Targeted therapy for gastric cancer. Current Treatment Options in Oncology, 13, 377–389.

    Article  PubMed  Google Scholar 

  6. Wong, H., & Yau, T. (2013). Molecular targeted therapies in advanced gastric cancer: Does tumor histology matter? Therapeutic Advances in Gastroenterology, 6, 15–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Nadauld, L. D., & Ford, J. M. (2013). Molecular profiling of gastric cancer: Toward personalized cancer medicine. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 31, 838–839.

    Article  CAS  Google Scholar 

  8. Trarbach, T., Moehler, M., Heinemann, V., Kohne, C. H., Przyborek, M., Schulz, C., et al. (2010). Phase II trial of mapatumumab, a fully human agonistic monoclonal antibody that targets and activates the tumour necrosis factor apoptosis-inducing ligand receptor-1 (TRAIL-R1), in patients with refractory colorectal cancer. British Journal of Cancer, 102, 506–512.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Greco, F. A., Bonomi, P., Crawford, J., Kelly, K., Oh, Y., Halpern, W., et al. (2008). Phase 2 study of mapatumumab, a fully human agonistic monoclonal antibody which targets and activates the TRAIL receptor-1, in patients with advanced non-small cell lung cancer. Lung Cancer, 61, 82–90.

    Article  PubMed  Google Scholar 

  10. Younes, A., Vose, J. M., Zelenetz, A. D., Smith, M. R., Burris, H. A., Ansell, S. M., et al. (2010). A Phase 1b/2 trial of mapatumumab in patients with relapsed/refractory non-Hodgkin’s lymphoma. British Journal of Cancer, 103, 1783–1787.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Cho, I. R., Koh, S. S., Min, H. J., Park, E. H., Srisuttee, R., Jhun, B. H., et al. (2010). Reovirus infection induces apoptosis of TRAIL-resistant gastric cancer cells by down-regulation of Akt activation. International Journal of Oncology, 36, 1023–1030.

    Article  CAS  PubMed  Google Scholar 

  12. Nam, S. Y., Jung, G. A., Hur, G. C., Chung, H. Y., Kim, W. H., Seol, D. W., & Lee, B. L. (2003). Upregulation of FLIP(S) by Akt, a possible inhibition mechanism of TRAIL-induced apoptosis in human gastric cancers. Cancer Science, 94, 1066–1073.

    Article  CAS  PubMed  Google Scholar 

  13. Kim, B. H., Na, K. M., Oh, I., Song, I. H., Lee, Y. S., Shin, J., & Kim, T. Y. (2013). Kurarinone regulates immune responses through regulation of the JAK/STAT and TCR-mediated signaling pathways. Biochemical Pharmacology, 85, 1134–1144.

    Article  CAS  PubMed  Google Scholar 

  14. Park, S. J., Nam, K. W., Lee, H. J., Cho, E. Y., Koo, U., & Mar, W. (2009). Neuroprotective effects of an alkaloid-free ethyl acetate extract from the root of Sophora flavescens Ait. against focal cerebral ischemia in rats. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 16, 1042–1051.

    Article  CAS  Google Scholar 

  15. Jeong, G. S., Li, B., Lee, D. S., Byun, E., An, R. B., Pae, H. O., et al. (2008). Lavandulyl flavanones from Sophora flavescens protect mouse hippocampal cells against glutamate-induced neurotoxicity via the induction of heme oxygenase-1. Biological & Pharmaceutical Bulletin, 31, 1964–1967.

    Article  CAS  Google Scholar 

  16. De Naeyer, A., Vanden Berghe, W., Pocock, V., Milligan, S., Haegeman, G., & De Keukeleire, D. (2004). Estrogenic and anticarcinogenic properties of kurarinone, a lavandulyl flavanone from the roots of Sophora flavescens. Journal of Natural Products, 67, 1829–1832.

  17. Jeong, T. S., Ryu, Y. B., Kim, H. Y., Curtis-Long, M. J., An, S. J., Lee, J. H., et al. (2008). Low density lipoprotein (LDL)-antioxidant flavonoids from roots of Sophora flavescens. Biological & Pharmaceutical Bulletin, 31, 2097–2102.

    Article  CAS  Google Scholar 

  18. Kim, S. J., Son, K. H., Chang, H. W., Kang, S. S., & Kim, H. P. (2003). Tyrosinase inhibitory prenylated flavonoids from Sophora flavescens. Biological & Pharmaceutical Bulletin, 26, 1348–1350.

    Article  CAS  Google Scholar 

  19. Son, J. K., Park, J. S., Kim, J. A., Kim, Y., Chung, S. R., & Lee, S. H. (2003). Prenylated flavonoids from the roots of Sophora flavescens with tyrosinase inhibitory activity. Planta Medica, 69, 559–561.

    Article  CAS  PubMed  Google Scholar 

  20. Kim, J. H., Ryu, Y. B., Kang, N. S., Lee, B. W., Heo, J. S., Jeong, I. Y., & Park, K. H. (2006). Glycosidase inhibitory flavonoids from Sophora flavescens. Biological & Pharmaceutical Bulletin, 29, 302–305.

    Article  CAS  Google Scholar 

  21. Berghe, W. V., De Naeyer, A., Dijsselbloem, N., David, J. P., De Keukeleire, D., & Haegeman, G. (2011). Attenuation of ERK/RSK2-driven NFkappaB gene expression and cancer cell proliferation by kurarinone, a lavandulyl flavanone isolated from Sophora flavescens ait. roots. Endocrine, Metabolic & Immune Disorders: Drug Targets, 11, 247–261.

    Article  Google Scholar 

  22. Kang, T. H., Jeong, S. J., Ko, W. G., Kim, N. Y., Lee, B. H., Inagaki, M., et al. (2000). Cytotoxic lavandulyl flavanones from Sophora flavescens. Journal of Natural Products, 63, 680–681.

    Article  CAS  PubMed  Google Scholar 

  23. Cho, Y. L., Lee, K. S., Lee, S. J., Namkoong, S., Kim, Y. M., Lee, H., et al. (2005). Amiloride potentiates TRAIL-induced tumor cell apoptosis by intracellular acidification-dependent Akt inactivation. Biochemical and Biophysical Research Communications, 326, 752–758.

    Article  CAS  PubMed  Google Scholar 

  24. Aggarwal, B. B., Kunnumakkara, A. B., Harikumar, K. B., Gupta, S. R., Tharakan, S. T., Koca, C., et al. (2009). Signal transducer and activator of transcription-3, inflammation, and cancer: How intimate is the relationship? Annals of the New York Academy of Sciences, 1171, 59–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Koyama, S., Koike, N., & Adachi, S. (2002). Expression of TNF-related apoptosis-inducing ligand (TRAIL) and its receptors in gastric carcinoma and tumor-infiltrating lymphocytes: A possible mechanism of immune evasion of the tumor. Journal of Cancer Research and Clinical Oncology, 128, 73–79.

    Article  CAS  PubMed  Google Scholar 

  26. Krieg, A., Mersch, S., Wolf, N., Stoecklein, N. H., Verde, P. E., Am Esch, J. S., II, Heikaus, S., Gabbert, H. E., Knoefel, W. T., & Mahotka, C. (2013). Expression of TRAIL-splice variants in gastric carcinomas: Identification of TRAIL-gamma as a prognostic marker. BMC Cancer, 13 (2013) 384.

  27. Wu, P., Cheng, Y. W., Wang, J. Y., Zhang, X. D., & Zhang, L. J. (2014). Inhibition of MEK sensitizes gastric cancer cells to TRAIL-induced apoptosis. Neoplasma, 61, 136–143.

    Article  CAS  PubMed  Google Scholar 

  28. Xu, L., Hu, X., Qu, X., Hou, K., Zheng, H., & Liu, Y. (2013). Cetuximab enhances TRAIL-induced gastric cancer cell apoptosis by promoting DISC formation in lipid rafts. Biochemical and Biophysical Research Communications, 439, 285–290.

    Article  CAS  PubMed  Google Scholar 

  29. Yang, L., Lan, C., Fang, Y., Zhang, Y., Wang, J., Guo, J., et al. (2013). Sodium nitroprusside (SNP) sensitizes human gastric cancer cells to TRAIL-induced apoptosis. International Immunopharmacology, 17, 383–389.

    Article  CAS  PubMed  Google Scholar 

  30. Li, Y., Fang, H., & Xu, W. (2007). Recent advance in the research of flavonoids as anticancer agents. Mini Reviews in Medicinal Chemistry, 7, 663–678.

    Article  CAS  PubMed  Google Scholar 

  31. Jin, C. Y., Park, C., Cheong, J., Choi, B. T., Lee, T. H., Lee, J. D., et al. (2007). Genistein sensitizes TRAIL-resistant human gastric adenocarcinoma AGS cells through activation of caspase-3. Cancer Letters, 257, 56–64.

    Article  CAS  PubMed  Google Scholar 

  32. Zhou, Y., Tian, L., Long, L., Quan, M., Liu, F., & Cao, J. (2013). Casticin potentiates TRAIL-induced apoptosis of gastric cancer cells through endoplasmic reticulum stress. PLoS ONE, 8, e58855.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Pitti, R. M., Marsters, S. A., Ruppert, S., Donahue, C. J., Moore, A., & Ashkenazi, A. (1996). Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. The Journal of Biological Chemistry, 271, 12687–12690.

    Article  CAS  PubMed  Google Scholar 

  34. Wiley, S. R., Schooley, K., Smolak, P. J., Din, W. S., Huang, C. P., Nicholl, J. K., et al. (1995). Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity, 3, 673–682.

    Article  CAS  PubMed  Google Scholar 

  35. Ashkenazi, A., Pai, R. C., Fong, S., Leung, S., Lawrence, D. A., Marsters, S. A., et al. (1999). Safety and antitumor activity of recombinant soluble Apo2 ligand. The Journal of Clinical Investigation, 104, 155–162.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Walczak, H., Miller, R. E., Ariail, K., Gliniak, B., Griffith, T. S., Kubin, M., et al. (1999). Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nature Medicine, 5, 157–163.

    Article  CAS  PubMed  Google Scholar 

  37. Dimberg, L. Y., Anderson, C. K., Camidge, R., Behbakht, K., Thorburn, A., & Ford, H. L. (2013). On the TRAIL to successful cancer therapy? Predicting and counteracting resistance against TRAIL-based therapeutics. Oncogene, 32, 1341–1350.

    Article  CAS  PubMed  Google Scholar 

  38. Gong, B., & Almasan, A. (2000). Apo2 ligand/TNF-related apoptosis-inducing ligand and death receptor 5 mediate the apoptotic signaling induced by ionizing radiation in leukemic cells. Cancer Research, 60, 5754–5760.

    CAS  PubMed  Google Scholar 

  39. Srivastava, R. K. (2001). TRAIL/Apo-2L: mechanisms and clinical applications in cancer. Neoplasia, 3, 535–546.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Wei, M. C., Zong, W. X., Cheng, E. H., Lindsten, T., Panoutsakopoulou, V., Ross, A. J., et al. (2001). Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science, 292, 727–730.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Tan, M. L., Ooi, J. P., Ismail, N., Moad, A. I., & Muhammad, T. S. (2009). Programmed cell death pathways and current antitumor targets. Pharmaceutical Research, 26, 1547–1560.

    Article  CAS  PubMed  Google Scholar 

  42. Wu, G. S. (2009). TRAIL as a target in anti-cancer therapy. Cancer Letters, 285, 1–5.

    Article  CAS  PubMed  Google Scholar 

  43. Seo, O. W., Kim, J. H., Lee, K. S., Lee, K. S., Kim, J. H., Won, M. H., et al. (2012). Kurarinone promotes TRAIL-induced apoptosis by inhibiting NF-kappaB-dependent cFLIP expression in HeLa cells. Experimental & Molecular Medicine, 44, 653–664.

    Article  CAS  Google Scholar 

  44. Kang, Y. J., Kim, I. Y., Kim, E. H., Yoon, M. J., Kim, S. U., Kwon, T. K., & Choi, K. S. (2011). Paxilline enhances TRAIL-mediated apoptosis of glioma cells via modulation of c-FLIP, survivin and DR5. Experimental & Molecular Medicine, 43, 24–34.

    Article  CAS  Google Scholar 

  45. Murphy, A. C., Weyhenmeyer, B., Noonan, J., Kilbride, S. M., Schimansky, S., Loh, K. P., et al. (2014). Modulation of Mcl-1 sensitizes glioblastoma to TRAIL-induced apoptosis. Apoptosis : An International Journal on Programmed Cell Death, 19, 629–642.

    Article  CAS  Google Scholar 

  46. Niu, G., Wright, K. L., Huang, M., Song, L., Haura, E., Turkson, J., et al. (2002). Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene, 21, 2000–2008.

    Article  CAS  PubMed  Google Scholar 

  47. Lirdprapamongkol, K., Sakurai, H., Abdelhamed, S., Yokoyama, S., Athikomkulchai, S., Viriyaroj, A., et al. (2013). Chrysin overcomes TRAIL resistance of cancer cells through Mcl-1 downregulation by inhibiting STAT3 phosphorylation. International Journal of Oncology, 43, 329–337.

    CAS  PubMed  Google Scholar 

  48. Carlisi, D., D’Anneo, A., Angileri, L., Lauricella, M., Emanuele, S., Santulli, A., et al. (2011). Parthenolide sensitizes hepatocellular carcinoma cells to TRAIL by inducing the expression of death receptors through inhibition of STAT3 activation. Journal of Cellular Physiology, 226, 1632–1641.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dazheng Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Cao, A., Wang, L. et al. Kurarinone Synergizes TRAIL-Induced Apoptosis in Gastric Cancer Cells. Cell Biochem Biophys 72, 241–249 (2015). https://doi.org/10.1007/s12013-014-0444-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0444-0

Keywords

Navigation