Skip to main content
Log in

Anti-hyperlipidemic and Anti-oxidative Effects of Gelsemine in High-Fat-Diet-Fed Rabbits

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The present study investigated the anti-hyperlipidemic proprieties of a natural alkaloid, gelsemine, in a high-fat-fed rabbit model. Animals were randomly divided into five groups and fed normal diet, hypercholesterolemic diet (1 % cholesterol), or hypercholesterolemic diet (1 % cholesterol) supplemented with gelsemine (1, 5, or 25 mg/kg). After 60 days, serum concentrations of total cholesterol (TC), LDL-C, HDL-C, triglycerides, apolipoproteins A and B, SGOT, SGPT, glucose, and insulin were measured in all experimental groups. Hypercholesterolemic diet resulted in significantly elevated levels of TC, TG, LDL-C, SGOT, and SGPT, and reduced HDL-C compared to the normocholesterolemic diet group. Gelsemine treatment significantly improved lipid profile parameters, affected by hyperlipidemia, while having no effect on the levels of apolipoproteins, glucose, and insulin. Furthermore, gelsemine treatment decreased hyperlipidemia-induced oxidative stress in a dose-dependent manner, as indicated by the increased activity of superoxide dismutase and catalase, and reduction in serum nitric oxide, and malondialdehyde concentrations in hyperlipidemic animals that received gelsemine supplementation. Dietary supplementation with gelsemine may, therefore, reverse the effect of the lipogenic diet on lipid profile and hepatic enzymes in hyperlipidemic rabbits, and protect tissues from oxidative stress, caused by high-fat diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dong, H., & Czaja, M. J. (2011). Regulation of lipid droplets by autophagy. Trends in endocrinology and metabolism: TEM, 22, 234–240.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Cole, L. K., Vance, J. E., & Vance, D. E. (2012). Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochimica et Biophysica Acta, 1821, 754–761.

    Article  CAS  PubMed  Google Scholar 

  3. Patschan, S., Chen, J., Polotskaia, A., et al. (2008). Lipid mediators of autophagy in stress-induced premature senescence of endothelial cells. American Journal of Physiology Heart and Circulatory Physiology, 294, H1119–H1129.

    Article  CAS  PubMed  Google Scholar 

  4. Della Corte, C., Alisi, A., Iorio, R., et al. (2011). Expert opinion on current therapies for nonalcoholic fatty liver disease. Expert Opinion on Pharmacotherapy, 12, 1901–1911.

    Article  CAS  PubMed  Google Scholar 

  5. Baynes, J. W. (1991). Role of oxidative stress in development of complications in diabetes. Diabetes, 40, 405–412.

    Article  CAS  PubMed  Google Scholar 

  6. Pieper, G. M., Jordan, M., Dondlinger, L. A., et al. (1995). Peroxidative stress in diabetic blood vessels. Reversal by pancreatic islet transplantation. Diabetes, 44, 884–889.

    Article  CAS  PubMed  Google Scholar 

  7. Bullon, P., Newman, H. N., & Battino, M. (2014). Obesity, diabetes mellitus, atherosclerosis and chronic periodontitis: A shared pathology via oxidative stress and mitochondrial dysfunction? Periodontology, 2000(64), 139–153.

    Article  Google Scholar 

  8. Hortelano, S., Dewez, B., Genaro, A. M., et al. (1995). Nitric oxide is released in regenerating liver after partial hepatectomy. Hepatology, 21, 776–786.

    CAS  PubMed  Google Scholar 

  9. Liu, M., Shen, J., Liu, H., et al. (2011). Gelsenicine from Gelsemium elegans attenuates neuropathic and inflammatory pain in mice. Biological and Pharmaceutical Bulletin, 34, 1877–1880.

    Article  CAS  PubMed  Google Scholar 

  10. Liu, M., Huang, H. H., Yang, J., et al. (2013). The active alkaloids of Gelsemium elegans Benth. are potent anxiolytics. Psychopharmacology (Berl), 225, 839–851.

    Article  CAS  Google Scholar 

  11. Dong, S. F., Hong, Y., Liu, M., et al. (2011). Berberine attenuates cardiac dysfunction in hyperglycemic and hypercholesterolemic rats. European Journal of Pharmacology, 660, 2–3.

    Article  Google Scholar 

  12. Zhang, H., Wei, J., Xue, R., Wu, J. D., et al. (2010). Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. Metabolism, 59, 285–292.

    Article  PubMed  Google Scholar 

  13. Genet, S., Kale, R. K., & Baquer, N. Z. (2002). Alterations in antioxidant enzymes and oxidative damage in experimental diabetic rat tissues: effect of vanadate and fenugreek (Trigonellafoenum graecum). Molecular and Cellular Biochemistry, 236, 7–12.

    Article  CAS  PubMed  Google Scholar 

  14. Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47, 469–474.

    Article  CAS  PubMed  Google Scholar 

  15. Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.

    Article  CAS  PubMed  Google Scholar 

  16. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  17. Vornoli, A., Pozzo, L., Della Croce, C. M., et al. (2014). Drug metabolism enzymes in a steatotic model of rat treated with a high fat diet and a low dose of streptozotocin. Food and Chemical Toxicology, 70, 54–60.

    Article  CAS  PubMed  Google Scholar 

  18. Yang, S. J., Je Lee, W., Kim, E. A., et al. (2014). Effects of N-adamantyl-4-methylthiazol-2-amine on hyperglycemia, hyperlipidemia and oxidative stress in streptozotocin-induced diabetic rats. European Journal of Pharmacology, 736C, 26–34.

    Article  Google Scholar 

  19. Wang, L., Tian, W., Uwais, Z., et al. (2014). AGE-breaker ALT-711 plus insulin could restore erectile function in streptozotocin-induced type 1 diabetic rats. Journal of Sexual Medicine, 11(6), 1452–1462.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This Project is supported by: 1. Zhejiang Provincial Natural Science Foundation of China (Grant No. Y2080374); 2.The National Natural Sciences Foundation of China (Project for Young Scientists, No. 30800999); 3. Zhejiang Provincial Natural Science Foundation of China (Project for Young Scientists, No. LQ13H070001).

Conflict of interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Chen, G., Chen, X. et al. Anti-hyperlipidemic and Anti-oxidative Effects of Gelsemine in High-Fat-Diet-Fed Rabbits. Cell Biochem Biophys 71, 337–344 (2015). https://doi.org/10.1007/s12013-014-0203-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0203-2

Keywords

Navigation