Skip to main content
Log in

The Injurious Effects of Hyperinsulinism on Blood Vessels

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Insulin resistance (IR) is a common feature of hypertension, Type II diabetes, coronary heart disease, Syndrome X, and other vascular diseases. It refers to a state in which a certain concentration of insulin produces less biologic effect than expected in human body. When IR develops, the response of human body to insulin decreases accordingly, thus inducing the compensatory hyper-secretion of insulin and consequently hyperinsulinism. Many clinical and epidemiologic studies have demonstrated that IR and iatrogenic hyperinsulinism induced consequently play an essential role in the pathogenesis of hypertension and atherosclerotic cardiovascular diseases. Therefore, more and more attention should be paid to the mechanism of IR in order to explore more therapeutic basis and prospective for the treatment of atherosclerosis and other cardiovascular diseases. In this review, we provided a general overview on the known molecular mechanisms of IR and summarized the recent findings on the injurious effects of hyperinsulinism in vitro and in vivo, which might be important for researchers and clinicians to better understand the etiology and clinical significance of IR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Reaven, G. M. (1995). Pathophysiology of insulin resistance in human disease. Physiological Reviews, 75, 473–476.

    CAS  PubMed  Google Scholar 

  2. Zheng, H., Worrall, C., Shen, H., Issad, T., Seregard, S., Girnita, A., et al. (2012). Selective recruitment of G protein-coupled receptor kinases (GRKs) controls signaling of the insulin-like growth factor 1 receptor. Proceedings of the National Academy of Sciences United States of America, 109, 7055–7060.

    Article  CAS  Google Scholar 

  3. Ganugapati, J., Baldwa, A., & Lalani, S. (2012). Molecular docking studies of banana flower flavonoids as insulin receptor tyrosine kinase activators as a cure for diabetes mellitus. Bioinformation, 8, 216–220.

    Article  PubMed Central  PubMed  Google Scholar 

  4. De Rocca Serra-Nédélec, A., Edouard, T., Tréguer, K., Tajan, M., Araki, T., Dance, M., et al. (2012). Noonan syndrome-causing SHP2 mutants inhibit insulin-like growth factor 1 release via growth hormone-induced ERK hyperactivation, which contributes to short stature. Proceedings of the National Academy of Sciences United States of America, 109, 4257–4262.

    Article  Google Scholar 

  5. Caccamo, G., Bonura, F., Bonura, F., Vitale, G., Novo, G., Evola, S., et al. (2010). Insulin resistance and acute coronary syndrome. Atherosclerosis, 211, 672–675.

    Article  CAS  PubMed  Google Scholar 

  6. Siddals, K. W., Allen, J., Sinha, S., Canfield, A. E., Kalra, P. A., & Gibson, J. M. (2011). Apposite insulin-like growth factor (IGF) receptor glycosylation is critical to the maintenance of vascular smooth muscle phenotype in the presence of factors promoting osteogenic differentiation and mineralization. Journal of Biological Chemistry, 286, 16623–16630.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kim, J. A., Montagnani, M., Koh, K. K., et al. (2006). Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation, 113, 1888–1904.

    Article  PubMed  Google Scholar 

  8. Negri, M., Sheiban, I., Arigliano, P. L., Tonni, S., Montresor, G., Carlini, S., et al. (1993). Interrelation between angiographic severity of coronary artery disease and plasma levels of insulin, C peptide and plasminogen activator inhibitor-1. American Journal of Cardiology, 72, 397–401.

    Article  CAS  PubMed  Google Scholar 

  9. Hill, M. M., Connolly, L. M., Simpson, R. J., & James, D. E. (2000). Differential protein phosphorylation in 3T3-L1 adipocytes in response to insulin versus platelet-derived growth factor. No evidence for a phosphatidylinositide 3-kinase-independent pathway in insulin signaling. Journal of Biological Chemistry, 275, 24313–24320.

    Article  CAS  PubMed  Google Scholar 

  10. Solymss, B. C., Marcil, M., Chaour, M., et al. (1995). Fasting hyperinsulinism, insulin resistance syndrome, and coronary artery disease in men and women. American Journal of Cardiology, 76, 1152–1156.

    Article  Google Scholar 

  11. Tsuchihashi, K., HikitaN, Hase M, et al. (1999). Role of hyperinsulinemia in atherosclerotic coronary arterial disease:studies of semi quantitative coronary angiography. Internal Medicine, 38, 691–697.

    Article  CAS  PubMed  Google Scholar 

  12. Lee, K. K., Cipriano, L. E., Owens, D. K., Go, A. S., & Hlatky, M. A. (2010). Cost-effectiveness of using high-sensitivity C-reactive protein to identify intermediate- and low-cardiovascular-risk individuals for statin therapy. Circulation, 122, 1478–1487.

    Article  CAS  PubMed  Google Scholar 

  13. Solymoss, B. C., Bourassa, M. G., Campeau, L., Sniderman, A., Marcil, M., Lespérance, J., et al. (2004). Effect of increasing metabolic syndrome score on atherosclerotic risk profile and coronary artery disease angiographic severity. American Journal of Cardiology, 93, 159–164.

    Article  PubMed  Google Scholar 

  14. Lee, K. K., Fortmann, S. P., Fair, J. M., Iribarren, C., Rubin, G. D., Varady, A., et al. (2009). Insulin resistance independently predicts the progression of coronary artery calcification. American Heart Journal, 157, 939–945.

    Article  CAS  PubMed  Google Scholar 

  15. Eringa, E. C., Stehouwer, C. D., Merlijn, T., Westerhof, N., & Sipkema, P. (2002). Physiological concentrations of insulin induce endothelin-mediated vasoconstriction during inhibition of NOS or PI3-kinase in skeletal muscle arterioles. Cardiovascular Research, 56, 464–471.

    Article  CAS  PubMed  Google Scholar 

  16. Taguchi, K., Matsumoto, T., Kamata, K., & Kobayashi, T. (2012). G protein-coupled receptor kinase 2, with β-arrestin 2, impairs insulin-induced Akt/endothelial nitric oxide synthase signaling in ob/ob mouse aorta. Diabetes, 61, 1978–1985.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Zhang, W., Wang, X., Jin, H., Qian, R., Zhang, G., Chen, S., et al. (2008). Effects of high glucose plus high [2] insulin on proliferation and apoptosis of mouse endothelial progenitor cells. Inflammation Research, 57, 571–576.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, L., Cao, F., Yin, T., Sun, D., Cheng, K., Zhang, J., et al. (2011). Moderate dose insulin promotes function of endothelial progenitor cells. Cell Biology International, 35, 215–220.

    Article  CAS  PubMed  Google Scholar 

  19. Wang, Y., Cheng, K. K., Lam, K. S., Wu, D., Wang, Y., Huang, Y., et al. (2011). APPL1 counteracts obesity-induced vascular insulin resistance and endothelial dysfunction by modulating the endothelial production of nitric oxide and endothelin-1 in mice. Diabetes, 60, 3044–3054.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Liu, K., Zhao, W., Gao, X., Huang, F., Kou, J., & Liu, B. (2012). Diosgenin ameliorates palmitate-induced endothelial dysfunction and insulin resistance via blocking IKKβ and IRS-1 pathways. Atherosclerosis, 223, 350–358.

    Article  CAS  PubMed  Google Scholar 

  21. Takebayashi, K., Sohma, R., Aso, Y., & Inukai, T. (2011). Effects of retinol binding protein-4 on vascular endothelial cells. Biochemical and Biophysical Research Communications, 408, 58–64.

    Article  CAS  PubMed  Google Scholar 

  22. Sobrevia, L., Nadal, A., Yudilevich, D. L., & Mann, G. E. (1996). Activation of l-arginine transport (system y +) and nitric oxide synthase by elevated glucose and insulin in human endothelial cells. Journal of Physiology, 490, 775–781.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Bollig-Fischer, A., Dewey, T. G., & Ethier, S. P. (2011). Oncogene activation induces metabolic transformation resulting in insulin-independence in human breast cancer cells. PLoS One, 6, e17959.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Bouallegue, A., Vardatsikos, G., & Srivastava, A. K. (2010). Involvement of insulin-like growth factor 1 receptor transactivation in endothelin-1-induced signaling in vascular smooth muscle cells. Canadian Journal of Physiology and Pharmacology, 88, 501–509.

    Article  CAS  PubMed  Google Scholar 

  25. Xu, Q., Li, S., Zhao, Y., Maures, T. J., Yin, P., & Duan, C. (2004). Evidence that IGF binding protein-5 functions as a ligand-independent transcriptional regulator in vascular smooth muscle cells. Circulation Research, 94, E46–E54.

    Article  CAS  PubMed  Google Scholar 

  26. Kihara, M., Robinson, P. J., Buck, S. H., & Dage, R. C. (1989). Mitogenesis by serum and PDGF is independent of PI degradation and PKC in VSMC. American Journal of Physiology, 256, C886–C892.

    CAS  PubMed  Google Scholar 

  27. Kiess, W., Kratzsch, J., Kruis, T., Müller, E., Wallborn, T., Odeh, R., et al. (2011). Genetics of human stature: Insight from single gene disorders. Hormone Research in Paediatrics, 76(Suppl 3), 11–13.

    Article  CAS  PubMed  Google Scholar 

  28. Mohamadi, A., Clark, L. M., Lipkin, P. H., Mahone, E. M., Wodka, E. L., & Plotnick, L. P. (2010). Medical and developmental impact of transition from subcutaneous insulin to oral glyburide in a 15-year-old boy with neonatal diabetes mellitus and intermediate DEND syndrome: extending the age of KCNJ11 mutation testing in neonatal DM. Pediatric Diabetes, 11, 203–207.

    Article  PubMed  Google Scholar 

  29. Oçal, G., Flanagan, S. E., Hacihamdioğlu, B., Berberoğlu, M., Siklar, Z., Ellard, S., et al. (2011). Clinical characteristics of recessive and dominant congenital hyperinsulinism due to mutation(s) in the ABCC8/KCNJ11 genes encoding the ATP-sensitive potasium channel in the pancreatic beta cell. Journal of Pediatric Endocrinology and Metabolism, 24, 1019–1023.

    Article  PubMed  Google Scholar 

  30. Zhang, W., Shen, X., Wan, C., Zhao, Q., Zhang, L., Zhou, Q., et al. (2012). Effects of insulin and insulin-like growth factor 1 on osteoblast proliferation and differentiation: differential signalling via Akt and ERK. Cell Biochemistry and Function, 30(4), 297–302. doi:10.1002/cbf.2801.

    Article  CAS  PubMed  Google Scholar 

  31. Liu, C. H., & Wu, K. W. (2009). Synergistic effects of basic fibroblast growth factor and insulin on Chinese hamster ovary cells under serum-free conditions. Journal of Bioscience and Bioengineering, 107, 312–317.

    Article  CAS  PubMed  Google Scholar 

  32. Hickman, J., & McElduff, A. (1989). Insulin promotes growth of the cultured rat osteosarcoma cell line UMR-106-01: an osteoblast-like cell. Endocrinology, 124, 701–706.

    Article  CAS  PubMed  Google Scholar 

  33. Vishwamitra, D., Shi, P., Wilson, D., Manshouri, R., Vega, F., Schlette, E. J., et al. (2011). Expression and effects of inhibition of type I insulin-like growth factor receptor tyrosine kinase in mantle cell lymphoma. Haematologica, 96, 871–880.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Yamazaki, M., Sato, A., Nishio, S., Takeda, T., Miyamoto, T., Katai, M., et al. (2009). Acromegaly accompanied by Turner syndrome with 47, XXX/45, X/46,XX mosaicism. Internal Medicine, 48, 447–453.

    Article  PubMed  Google Scholar 

  35. Lim, S., Park, Y. M., Sakuma, I., & Koh, K. K. (2012). How to control residual cardiovascular risk despite statin treatment: Focusing on HDL-cholesterol. International Journal of Cardiology, 166(1), 8–14.

    Article  PubMed  Google Scholar 

  36. Robins, S. J., Lyass, A., Zachariah, J. P., Massaro, J. M., & Vasan, R. S. (2011). Insulin resistance and the relationship of a dyslipidemia to coronary heart disease: the Framingham Heart Study. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 1208–1214.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Mouquet, F., Cuilleret, F., Susen, S., Sautière, K., Marboeuf, P., Ennezat, P. V., et al. (2009). Metabolic syndrome and collateral vessel formation in patients with documented occluded coronary arteries: association with hyperglycaemia, insulin-resistance, adiponectin and plasminogen activator inhibitor-1. European Heart Journal, 30, 840–849.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Pandolfi, A., Cetrullo, D., Polishuck, R., Alberta, M. M., Calafiore, A., Pellegrini, G., et al. (2001). Plasminogen activator inhibitor type 1 is increased in the arterial wall of type II diabetic subjects. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 1378–1382.

    Article  CAS  PubMed  Google Scholar 

  39. von der Thüsen, J. H., Borensztajn, K. S., Moimas, S., van Heiningen, S., Teeling, P., van Berkel, T. J., et al. (2011). IGF-1 has plaque-stabilizing effects in atherosclerosis by altering vascular smooth muscle cell phenotype. American Journal of Pathology, 178, 924–934.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The work of this manuscript is financially supported by (2012) National Natural Science Foundation of China (No. 81170281).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Yu, C., Zhang, B. et al. The Injurious Effects of Hyperinsulinism on Blood Vessels. Cell Biochem Biophys 69, 213–218 (2014). https://doi.org/10.1007/s12013-013-9810-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9810-6

Keywords

Navigation