Skip to main content

Advertisement

Log in

The Role of Protein Conformational Switches in Pharmacology: Its Implications in Metabolic Reprogramming and Protein Evolution

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Besides pharmacogenomics and drug dynamics, pharmacological properties of a drug could also arise from protein conformational switches. These switches would arise from the following mechanisms: (a) slight shifts away from a protein’s native conformation induced by mutation, (b) changes in the protein’s environment allowing for structural rearrangements to form hitherto unknown conformations, (c) parsing the protein into foldable polypeptide fragment(s) by either proteolysis of the native structure or (d) perturbation of the native conformation to generate polypeptide fragment(s). These switches are modulated by changes in the protein’s matrix properties such as pH, temperature, ligands—their nature, concentration and complexes; micronutrients, oxidant/antioxidant status and metabolic products within the functional environment of the protein. The pharmacological implications of these are discussed in light of polypharmacology arising from protein isomerism, cross-pharmacology, possible decreases in both the expressible and expressed protein population and metabolic reprogramming—and ultimately, how these factors relate to diseases. Further implications include variational drug toxicity and drug response idiosyncrasies. Another important consequence is that the “whole life” history of the individual would play an active role in that individual’s response to disease severity and drug response up to that very moment and is prone to variations with changes in pre-disposing factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Huff, M. E., Balch, W. E., & Kelly, J. E. (2003). Pathological and functional amyloid formation orchestrated by the secretory pathway. Current Opinion in Structural Biology, 13, 674–682.

    Article  CAS  PubMed  Google Scholar 

  2. Kesari, K. K., Kumar, S., Nirala, J., Siddiqui, M. H., & Behari, J. (2013). Biophysical evaluation of radiofrequency electromagnetic field effects on male reproductive pattern. Cell Biochemistry and Biophysics, 65, 85–96.

    Article  CAS  PubMed  Google Scholar 

  3. Stadtman, E. R., & Berlett, B. S. (1997). Reactive oxygen-mediated protein oxidation in aging and disease. Chemical Research and Toxicology, 10, 485–494.

    Article  CAS  Google Scholar 

  4. Dobson, C. M. (2004). Principles of protein folding, misfolding and aggregation. Seminars in Cell and Developmental Biology, 15, 3–16.

    Article  CAS  PubMed  Google Scholar 

  5. Chow, M. K. M., Lomas, D. A., & Bottomley, S. P. (1994). Promiscuous beta-strand interactions and the conformational diseases. Current Medicinal Chemistry, 11, 491–499.

    Article  Google Scholar 

  6. Ambroggio, X. I., & Kuhlman, B. (2006). Design of protein conformational switches. Current Opinion in Structural Biology, 16, 525–530.

    Article  CAS  PubMed  Google Scholar 

  7. Szentmihályi, K., Blázovics, A., & Vinkler, P. (2003). Free radical properties of metal complexes. Acta Biologica Szegediensis, 47(1–4), 107–109.

    Google Scholar 

  8. Subramaniam, R., Roediger, F., Jordan, B., Mattson, M. P., Keller, J. N., Waeq, G., et al. (1997). The lipid peroxidation product, 4-hydroxy-2-trans-nonenal, alters the conformation of cortical synaptosomal membrane proteins. Journal of Neurochemistry, 69, 1161–1169.

    Article  CAS  PubMed  Google Scholar 

  9. Butterfield, D. A., & Kanski, J. (2001). Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mechanisms of Ageing and Development, 122, 945–962.

    Article  CAS  PubMed  Google Scholar 

  10. Pocernich, C. B., Cardin, A. L., Racine, C. L., Lauderback, C. M., & Butterfield, D. A. (2001). Glutathione elevation and its protective role in acrolein-induced protein damage in synaptosomal membranes: Relevance to brain lipid peroxidation in neurodegenerative disease. Neurochemistry International, 39, 141–149.

    Article  CAS  PubMed  Google Scholar 

  11. Keller, J. N., & Mattson, M. P. (1998). Roles of lipid peroxidation in modulation of cellular signaling pathways, cell dysfunction, and death in the nervous system. Reviews in Neurosciences, 9, 105–115.

    Article  CAS  Google Scholar 

  12. Shacter, E. (2000). Quantification and significance of protein oxidation in biological samples. Drug Metabolism and Review, 32, 307–326.

    Article  CAS  Google Scholar 

  13. Stadtman, E. R., & Levine, R. L. (2006). Protein Oxidation. Annals of the New York Academy of Sciences, 899, 191–208.

    Article  Google Scholar 

  14. Evans, P., & Halliwell, B. (2001). Micronutrients: Oxidant/antioxidant status. British Journal of Nutrition, 85(Suppl 2), S67–S74.

    Article  CAS  PubMed  Google Scholar 

  15. Spolitak, T., Dawson, J. H., & Ballou, D. P. (2005). Reaction of ferric cytochrome P450cam with peracids: Kinetic characterization of intermediates on the reaction pathway. Journal of Biological Chemistry, 280, 20300–20309.

    Article  CAS  PubMed  Google Scholar 

  16. Street, T. O., Krukenberg, K. A., Rosgen, J., Bolen, D. W., & Agard, D. A. (2010). Osmolyte-induced conformational changes in the Hsp90 molecular chaperone. Protein Science, 19, 57–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Bogdanov, M., Heacock, P. N., & Dowhan, W. A. (2002). Polytopic membrane protein displays a reversible topology dependent on membrane lipid composition. European Molecular Biology Organization Journal, 21, 2107–2116.

    Article  CAS  Google Scholar 

  18. Frauenfelder, H., Fenimore, P. W., Chen, G., & McMahon, B. H. (2006). Protein folding is slaved to solvent motions. Proceedings of the National Academy of Sciences of the United States of America, 103, 15469–15472.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kloczkowski, A., Sen, T., & Jernigan, B. (2005). Promiscuous vs native protein function. Insights from studying collective motions in proteins with elastic network models. Journal of Biomolecular Structure and Dynamics, 22, 621–624.

    Google Scholar 

  20. Uversky, V. N., Li, J., & Fink, A. L. (2001). Metal-triggered structural transformations, aggregation and fibril formation of human alpha-synuclein. A possible molecular link between Parkinson’s disease and heavy metal exposure. Journal of Biological Chemistry, 276, 44284–44296.

    Article  CAS  PubMed  Google Scholar 

  21. Khersonsky, O., Roodveldt, C., & Tawfik, D. S. (2006). Enzyme promiscuity: Evolutionary and mechanistic aspects. Current Opinion in Structural Biology, 10, 498–508.

    Article  CAS  Google Scholar 

  22. Gruebele, M. (2002). Protein folding: The free energy surface. Current Opinion in Structural Biology, 12, 161–168.

    Article  CAS  PubMed  Google Scholar 

  23. Vaiana, S. M., Rotter, M. A., Emanuele, A., Ferrone, F. A., & Palma-Vittorelli, M. B. (2005). Effect of T-R conformational change on sickle-cell hemoglobin interactions and aggregation. Proteins: Structure Function and Bioinformatics, 58, 426–438.

    Article  CAS  Google Scholar 

  24. Huang, S., Murphy, S., & Matouschek, A. (2000). Effect of the protein import machinery at the mitochondrial surface on precursor stability. Proceedings of the National Academy of Sciences of the United States of America, 97, 12991–12996.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Salvay, A. G., Grigera, J. R., & Colombo, M. F. (2003). The role of hydration on the mechanism of allosteric regulation: In situ measurements of the oxygen-linked kinetics of water binding to hemoglobin. Biophysical Journal, 84, 564–570.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Fernández, A., & Berry, R. S. (2003). Proteins with H-bond packing defects are highly interactive with lipid bilayers: Implications for amyloidogenesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 2391–2396.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Qu, Y., Bolen, C. L., & Bolen, D. W. (1998). Osmolyte-driven contraction of a random coil protein. Proceedings of the National Academy of Sciences of the United States of America, 95, 9268–9273.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Selkoe, D. J. (2003). Folding proteins in fatal ways. Nature, 426, 900–904.

    Article  CAS  PubMed  Google Scholar 

  29. Dobson, C. M. (2003). Protein folding and misfolding. Nature, 426, 884–890.

    Article  CAS  PubMed  Google Scholar 

  30. Goldberg, A. L. (2003). Protein degradation and protection against misfolded or damaged proteins. Nature, 426, 895–899.

    Article  CAS  PubMed  Google Scholar 

  31. Lee, C., & Yu, M.-H. (2005). Protein folding and diseases. Journal of Biochemistry and Molecular Biology, 38, 275–280.

    Article  CAS  PubMed  Google Scholar 

  32. McClellan, A. J., Tam, S., Kaganovich, D., & Frydman, J. (2005). Protein quality control: Chaperones culling corrupt conformations. Nature Cell Biology, 7, 736–741.

    Article  CAS  PubMed  Google Scholar 

  33. Carrell, R. W. (2005). Cell toxicity and conformational disease. Trends in Cell Biology, 15, 574–580.

    Article  CAS  PubMed  Google Scholar 

  34. Gonzales, R. A., & Jaworski, J. N. (1997). Alcohol and glutamate. Alcohol Health and Research World, 21, 120–127.

    CAS  PubMed  Google Scholar 

  35. Mihic, S. J., & Harris, R. A. (1997). GABA and the GABAA receptor. Alcohol Health and Research World, 21, 127–132.

    CAS  PubMed  Google Scholar 

  36. Hoshi, T., & Heinemann, S. H. (2001). Regulation of cell function by methionine oxidation and reduction. Journal of Physiology, 531, 1–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Jalencas, X., & Mestres, J. (2013). On the origins of drug polypharmacology. Medicinal Chemistry Communications, 4, 80–87.

    Article  CAS  Google Scholar 

  38. Ma, B., Kumar, S., Tsai, C. J., & Nussinov, R. (1999). Folding funnels and binding mechanisms. Protein Engineering, 12, 713–720.

    Article  CAS  PubMed  Google Scholar 

  39. The ENCODE Project Consortium. (2007). Identification and analysis of functional elements in 1 % of the human genome by the ENCODE pilot project. Nature, 447, 799–816.

    Article  PubMed Central  Google Scholar 

  40. Gupta, S., Banerjee, J., & Agarwal, A. (2006). The impact of reactive oxygen species on early human embryos: A systematic review of the literature. Embryo Talk, 1, 87–94.

    Google Scholar 

  41. Tanaka, M., Chock, P. B., & Stadtman, E. R. (2007). Oxidized messenger RNA induces translation errors. Proceedings of the National Academy of Sciences of the United States of America, 104, 66–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Sánchez-alcázar, J. A., Schneider, E., Hernández-Muñoz, I., Ruiz-Cabello, J., Siles-Rivas, E., De La Torre, P., et al. (2003). Reactive oxygen species mediate the down-regulation of mitochondrial transcripts and proteins by tumour necrosis factor-α in L929 cells. Biochemical Journal, 370, 609–619.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Löwenberg, B. (1996). Treatment of the elderly patient with acute myeloid leukaemia. Baillière’s Clinical Haematology, 9, 147–159.

    Article  PubMed  Google Scholar 

  44. Walton, J. (1982). The role of limited cell replicative capacity in pathological age change. Mechanisms in Ageing and Development, 19, 217–244.

    Article  CAS  Google Scholar 

  45. Appay, V., & Sauce, D. (2007). Immune activation and inflammation in HIV-1 infection: Causes and consequences. The Journal of Pathology, 214, 231–241.

    Article  Google Scholar 

  46. Seidman, M. D., Ahmad, N., Joshi, D., Seidman, J., Thawani, S., & Quirk, W. S. (2004). Age-related hearing loss and its association with reactive oxygen species and mitochondrial DNA damage. Acta Otolaryngology, Suppl 552, 16–24.

    Article  Google Scholar 

  47. Neef, D. W., Turski, M. L., & Thiele, D. J. (2010). Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease. PLoS Biology, 8(1), e1000291. doi:10.1371/journal.pbio.1000291.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Batista-Nascimento, L., Neef, D. W., Liu, P. C. C., Rodrigues-Pousada, C., & Thiele, D. J. (2011). Deciphering human heat shock transcription factor 1 regulation via post-translational modification in yeast. PLoS One, 6(1), e15976. doi:10.1371/journal.pone.0015976.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Luo, W., Chang, R., Zhong, J., Pandey, A., & Semenza, G. L. (2012). Histone demethylase JMJD2C is a coactivator for hypoxia-inducible factor 1 that is required for breast cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 109, 19889–19890.

    CAS  Google Scholar 

  50. Hahn, J.-S., Hu, Z., Thiele, D. J., & Iyer, V. R. (2004). Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Molecular and Cellular Biology, 24, 5249–5256.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G., & Thompson, C. B. (2008). The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metabolism, 7, 11–20.

    Article  CAS  PubMed  Google Scholar 

  52. Muñoz-Pinedo, C., El Mjiyad, N., & Ricci, J.-E. (2012). Cancer metabolism: Current perspectives and future directions. Cell Death and Disease, 3, e248. doi:10.1038/cddis.2011.123.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Anderson, R. M., & Weindruch, R. (2010). Metabolic reprogramming, caloric restriction and aging. Trends in Endocrinology and Metabolism, 21, 134–141.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Morimoto, R. I. (2008). Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes and Development, 22, 1427–1438.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Hung, C. W., Chen, Y. C., Hsieh, W. L., Chiou, S. H., & Kao, C. L. (2010). Ageing and neurodegenerative diseases. Ageing Research Reviews, 9(Suppl 1), S36–S46.

    Article  PubMed  Google Scholar 

  56. Duncan, R. S., Goad, D. L., Grillo, M. A., Kaja, S., Payne, A. J., & Koulen, P. (2010). Control of intracellular calcium signaling as a neuroprotective strategy. Molecules, 15, 1168–1195.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Torres, M., Castillo, K., Armisén, R., Stutzin, A., Soto, C., et al. (2010). Prion protein misfolding affects calcium homeostasis and sensitizes cells to endoplasmic reticulum stress. PLoS One, 5(12), e15658. doi:10.1371/journal.pone.0015658.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Torres, M., Encina, G., Soto, C., & Hetz, C. (2011). Abnormal calcium homeostasis and protein folding stress at the ER—A common factor in familial and infectious prion disorders. Communicative and Integrative Biology, 4, 258–261.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Wasserman, M., Alarcón, C., & Mendoza, P. M. (1982). Effects of Ca2+ depletion on the asexual cell cycle of Plasmodium falciparum. American Journal of Tropical Medicine and Hygiene, 31, 711–717.

    CAS  PubMed  Google Scholar 

  60. Tanabe, K. (1990). Ion metabolism in malaria infected erythrocytes. Blood Cells, 16, 437–449.

    CAS  PubMed  Google Scholar 

  61. Hubber, S. M., Uhlemann, A.-C., Gamper, N. L., Duranton, C., Kremsner, P. G., & Lang, F. (2002). Plasmodium falciparum activates endogenous Cl- channels of human erythrocytes by membrane oxidation. European Molecular Biology Organization Journal, 21, 22–30.

    Article  Google Scholar 

  62. Gazarini, M. L., Thomas, A. P., Pozzan, T., & Garcia, C. R. S. (2003). Calcium signaling in a low calcium environment: How the intracellular malaria parasite solves the problem. Journal of Cell Biology, 161, 103–110.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Stegh, A. H. (2013). Toward personalized cancer nanomedicine—past, present, and future. Integrative Biology, 5, 48–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles O. Nwamba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nwamba, C.O., Ibrahim, K. The Role of Protein Conformational Switches in Pharmacology: Its Implications in Metabolic Reprogramming and Protein Evolution. Cell Biochem Biophys 68, 455–462 (2014). https://doi.org/10.1007/s12013-013-9748-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9748-8

Keywords

Navigation