Skip to main content
Log in

Coupling Between GABAA-R Ligand-Binding Activity and Membrane Organization in β-Cyclodextrin-Treated Synaptosomal Membranes from Bovine Brain Cortex: New Insights from EPR Experiments

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Correlations between GABAA receptor (GABAA-R) activity and molecular organization of synaptosomal membranes (SM) were studied along the protocol for cholesterol (Cho) extraction with β-cyclodextrin (β-CD). The mere pre-incubation (PI) at 37°C accompanying the β-CD treatment was an underlying source of perturbations increasing [3H]-FNZ maximal binding (70%) and K d (38%), plus a stiffening of SMs’ hydrocarbon core region. The latter was inferred from an increased compressibility modulus (K) of SM-derived Langmuir films, a blue-shifted DPH fluorescence emission spectrum and the hysteresis in DPH fluorescence anisotropy (A DPH) in SMs submitted to a heating–cooling cycle (4–37–4°C) with A DPH,heating < A DPH,cooling. Compared with PI samples, the β-CD treatment reduced B max by 5% which correlated with a 45%-decrement in the relative Cho content of SM, a decrease in K and in the order parameter in the EPR spectrum of a lipid spin probe labeled at C5 (5-SASL), and significantly increased A TMA-DPH. PI, but not β-CD treatment, could affect the binding affinity. EPR spectra of 5-SASL complexes with β-CD-, SM-partitioned, and free in solution showed that, contrary to what is usually assumed, β-CD is not completely eliminated from the system through centrifugation washings. It was concluded that β-CD treatment involves effects of at least three different types of events affecting membrane organization: (a) effect of PI on membrane annealing, (b) effect of residual β-CD on SM organization, and (c) Cho depletion. Consequently, molecular stiffness increases within the membrane core and decreases near the polar head groups, leading to a net increase in GABAA-R density, relative to untreated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

β-CD:

β-Cyclodextrin

B max :

Maximal binding

BSA:

Bovine serum albumin

CD-PI:

Synaptosomal membranes treated with β-CD

Cho:

Cholesterol

CON-PI:

Synaptosomal membranes submitted to the pre-incubation necessary for the β-CD-mediated Cho extraction but in absence of β-CD

DPH:

1,6-diphenyl-1,3,5-hexatriene

CSM:

Center of spectral mass

DZ:

Diazepam

EPR:

Electron paramagnetic resonance

FNZ:

Flunitrazepam

I:

Immobile (protein bound) component in 12-SASL EPR spectra

K :

Compressibility modulus

K d :

Equilibrium dissociation constant

Lo:

Liquid-ordered phase

M:

Mobile component (partitioned in the lipid phase) in 12-SASL EPR spectra

MF:

Membrane-free

PI:

Pre-incubation

GABAA-R:

GABAA receptor

SEM:

Standard error of the mean

SM:

Synaptosomal membranes

12-SASL:

12-doxylstearic acid spin label

5-SASL:

5-doxylstearic acid spin label

So:

Solid-ordered phase

TMA-DPH:

1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate

References

  1. Lundbaek, J. A., et al. (1996). Membrane stiffness and channel function. Biochemistry, 35(12), 3825–3830.

    Article  PubMed  CAS  Google Scholar 

  2. Whetton, A. D., Gordon, L. M., & Houslay, M. D. (1983). Adenylate cyclase is inhibited upon depletion of plasma-membrane cholesterol. Biochemical Journal, 212(2), 331–338.

    PubMed  CAS  Google Scholar 

  3. North, P., & Fleischer, S. (1983). Alteration of synaptic membrane cholesterol/phospholipid ratio using a lipid transfer protein. Effect on gamma-aminobutyric acid uptake. Journal of Biological Chemistry, 258(2), 1242–1253.

    PubMed  CAS  Google Scholar 

  4. Gimpl, G., Burger, K., & Fahrenholz, F. (1997). Cholesterol as modulator of receptor function. Biochemistry, 36(36), 10959–10974.

    Article  PubMed  CAS  Google Scholar 

  5. Jafurulla, M., Tiwari, S., & Chattopadhyay, A. (2011). Identification of cholesterol recognition amino acid consensus (CRAC) motif in G-protein coupled receptors. Biochemical and Biophysical Research Communications, 404(1), 569–573.

    Article  PubMed  CAS  Google Scholar 

  6. Antollini, S. S., & Barrantes, F. J. (1998). Disclosure of discrete sites for phospholipid and sterols at the protein–lipid interface in native acetylcholine receptor-rich membrane. Biochemistry, 37(47), 16653–16662.

    Article  PubMed  CAS  Google Scholar 

  7. Borroni, V., et al. (2007). Cholesterol depletion activates rapid internalization of submicron-sized acetylcholine receptor domains at the cell membrane. Molecular Membrane Biology, 24(1), 1–15.

    Article  PubMed  CAS  Google Scholar 

  8. Pucadyil, T. J., & Chattopadhyay, A. (2004). Cholesterol modulates ligand binding and G-protein coupling to serotonin(1A) receptors from bovine hippocampus. Biochimica et Biophysica Acta, 1663(1–2), 188–200.

    Article  PubMed  CAS  Google Scholar 

  9. Pucadyil, T. J., & Chattopadhyay, A. (2005). Cholesterol modulates the antagonist-binding function of hippocampal serotonin1A receptors. Biochimica et Biophysica Acta, 1714(1), 35–42.

    Article  PubMed  CAS  Google Scholar 

  10. Klein, U., Gimpl, G., & Fahrenholz, F. (1995). Alteration of the myometrial plasma membrane cholesterol content with beta-cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry, 34(42), 13784–13793.

    Article  PubMed  CAS  Google Scholar 

  11. Barrantes, F. J. (2004). Structural basis for lipid modulation of nicotinic acetylcholine receptor function. Brain Research Brain Research Reviews, 47(1–3), 71–95.

    Article  PubMed  CAS  Google Scholar 

  12. Sooksawate, T., & Simmonds, M. A. (2001). Influence of membrane cholesterol on modulation of the GABA(A) receptor by neuroactive steroids and other potentiators. British Journal of Pharmacology, 134(6), 1303–1311.

    Article  PubMed  CAS  Google Scholar 

  13. Bennett, P. J., & Simmonds, M. A. (1996). The influence of membrane cholesterol on the GABAA receptor. British Journal of Pharmacology, 117(1), 87–92.

    PubMed  CAS  Google Scholar 

  14. Kilsdonk, E. P., et al. (1995). Cellular cholesterol efflux mediated by cyclodextrins. Journal of Biological Chemistry, 270(29), 17250–17256.

    Article  PubMed  CAS  Google Scholar 

  15. Christian, A., et al. (1997). Use of cyclodextrins for manipulating cellular cholesterol content. Journal of Lipid Research, 38(11), 2264–2272.

    PubMed  CAS  Google Scholar 

  16. Agarwal, S. R., et al. (2011). Effects of cholesterol depletion on compartmentalized cAMP responses in adult cardiac myocytes. Journal of Molecular and Cellular Cardiology, 50(3), 500–509.

    Article  PubMed  CAS  Google Scholar 

  17. Szente, L., & Szejtli, J. (1999). Highly soluble cyclodextrin derivatives: Chemistry, properties, and trends in development. Advanced Drug Delivery Reviews, 36(1), 17–28.

    Article  PubMed  CAS  Google Scholar 

  18. Duchene, D., Ponchel, G., & Wouessidjewe, D. (1999). Cyclodextrins in targeting. Application to nanoparticles. Advanced Drug Delivery Reviews, 36(1), 29–40.

    Article  PubMed  CAS  Google Scholar 

  19. Hirayama, F., & Uekama, K. (1999). Cyclodextrin-based controlled drug release system. Advanced Drug Delivery Reviews, 36(1), 125–141.

    Article  PubMed  CAS  Google Scholar 

  20. Mishur, R. J., et al. (2011). Molecular recognition and enhancement of aqueous solubility and bioactivity of CD437 by beta-cyclodextrin. Bioorganic & Medicinal Chemistry Letters, 21(2), 857–860.

    Article  CAS  Google Scholar 

  21. Jablin, M. S., et al. (2010). Effects of beta-cyclodextrin on the structure of sphingomyelin/cholesterol model membranes. Biophysical Journal, 99(5), 1475–1481.

    Article  PubMed  CAS  Google Scholar 

  22. Camilleri, P., Haskins, N. J., & Howlett, D. R. (1994). beta-Cyclodextrin interacts with the Alzheimer amyloid beta-A4 peptide. FEBS Letters, 341(2–3), 256–258.

    Article  PubMed  CAS  Google Scholar 

  23. Pytel, M., Mercik, K., & Mozrzymas, J. W. (2006). Interaction between cyclodextrin and neuronal membrane results in modulation of GABA(A) receptor conformational transitions. British Journal of Pharmacology, 148(4), 413–422.

    Article  PubMed  CAS  Google Scholar 

  24. Sogaard, R., et al. (2006). GABA(A) receptor function is regulated by lipid bilayer elasticity. Biochemistry, 45(43), 13118–13129.

    Article  PubMed  CAS  Google Scholar 

  25. Garcia, D. A., Marin, R. H., & Perillo, M. A. (2002). Stress-induced decrement in the plasticity of the physical properties of chick brain membranes. Molecular Membrane Biology, 19(3), 221–230.

    Article  PubMed  CAS  Google Scholar 

  26. Zasadzinski, J. A., et al. (1994). Langmuir–Blodgett films. Science, 263(5154), 1726–1733.

    Article  PubMed  CAS  Google Scholar 

  27. Perillo, M. A., & Arce, A. (1991). Determination of the membrane–buffer partition coefficient of flunitrazepam, a lipophilic drug. Journal of Neuroscience Methods, 36(2–3), 203–208.

    Article  PubMed  CAS  Google Scholar 

  28. Niu, S. L., & Litman, B. J. (2002). Determination of membrane cholesterol partition coefficient using a lipid vesicle-cyclodextrin binary system: Effect of phospholipid acyl chain unsaturation and headgroup composition. Biophysical Journal, 83(6), 3408–3415.

    Article  PubMed  CAS  Google Scholar 

  29. Lowry, O. H., et al. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.

    PubMed  CAS  Google Scholar 

  30. Yammamura, H. I., Enna, S. J., & Michael, J. K. (1978). Neurotransmiter receptor binding. New York: Raven.

    Google Scholar 

  31. Esmann, M., & Marsh, D. (1985). Spin-label studies on the origin of the specificity of lipid–protein interactions in Na+, K+-ATPase membranes from Squalus acanthias. Biochemistry, 24(14), 3572–3578.

    Article  PubMed  CAS  Google Scholar 

  32. Sanson, A., et al. (1976). An ESR study of the anchoring of spin-labeled stearic acid in lecithin multilayers. Chemistry and Physics of Lipids, 17(4), 435–444.

    Article  PubMed  CAS  Google Scholar 

  33. Egret-Charlier, M., Sanson, A., & Ptak, M. (1978). Ionization of fatty acids at the lipid–water interface. FEBS Letters, 89(2), 313–316.

    Article  PubMed  CAS  Google Scholar 

  34. Jost, P. C., et al. (1973). Evidence for boundary lipid in membranes. Proceedings of the National Academy of Sciences of the United States of America, 70(2), 480–484.

    Article  PubMed  CAS  Google Scholar 

  35. Schreier, S., Polnaszek, C. F., & Smith, I. C. (1978). Spin labels in membranes. Problems in practice. Biochimica et Biophysica Acta, 515(4), 395–436.

    PubMed  CAS  Google Scholar 

  36. Hoffman, P., Sandhoff, K., & Marsh, D. (2000). Comparatie dynamics and location of chain spin-labelled sphingomyelin and phosphatidylcholine in dimyristoyl phosphatidylcholine membranes studied by EPR spectroscopy. Biochimica et Biophysica Acta, 1468, 359–366.

    Article  Google Scholar 

  37. Szabo, A.G. (2000). Fluorescence principles and measurements. In M. G. Gore (Ed.) Spectrophotometry and spectrofluorimetry. Oxford: Oxford University Press.

  38. Ruan, K., & Balny, C. (2002). High pressure static fluorescence to study macromolecular structure–function. Biochimica et Biophysica Acta, 1595(1–2), 94–102.

    PubMed  CAS  Google Scholar 

  39. Silva, J. L., Miles, E. W., & Weber, G. (1986). Pressure dissociation and conformational drift of the beta dimer of tryptophan synthase. Biochemistry, 25(19), 5780–5786.

    Article  PubMed  CAS  Google Scholar 

  40. Lackowicz, R. J. (1983). Principles of fluorescence spectroscopy. New York: Plenum Press.

    Google Scholar 

  41. Verger, R., & Pattus, F. (1976). Spreading of membranes at the air/water interface. Chemistry and Physics of Lipids, 16(4), 285–291.

    Article  PubMed  CAS  Google Scholar 

  42. Rosetti, C. M., Maggio, B., & Oliveira, R. G. (2008). The self-organization of lipids and proteins of myelin at the membrane interface. Molecular factors underlying the microheterogeneity of domain segregation. Biochimica et Biophysica Acta, 1778(7–8), 1665–1675.

    Article  PubMed  CAS  Google Scholar 

  43. Sokal, R., & Rohlf, F. (1987). Introduction to biostatistics. A series of books in biology. New York: W. H. Freeman & Company.

  44. Absalom, N. L., Lewis, T. M., & Schofield, P. R. (2004). Mechanisms of channel gating of the ligand-gated ion channel superfamily inferred from protein structure. Experimental Physiology, 89(2), 145–153.

    Article  PubMed  CAS  Google Scholar 

  45. Irie, T., & Uekama, K. (1999). Cyclodextrins in peptide and protein delivery. Advanced Drug Delivery Reviews, 36(1), 101–123.

    Article  PubMed  CAS  Google Scholar 

  46. Cabeca, L. F., et al. (2008). Topology of a ternary complex (proparacaine-beta-cyclodextrin-liposome) by STD NMR. Magnetic Resonance in Chemistry, 46(9), 832–837.

    Article  PubMed  CAS  Google Scholar 

  47. Breckenridge, W. C., Gombos, G., & Morgan, I. G. (1972). The lipid composition of adult rat brain synaptosomal plasma membranes. Biochimica et Biophysica Acta, 266(3), 695–707.

    Article  PubMed  CAS  Google Scholar 

  48. Ohtani, Y., et al. (1989). Differential effects of alpha-, beta- and gamma-cyclodextrins on human erythrocytes. European Journal of Biochemistry, 186(1–2), 17–22.

    Article  PubMed  CAS  Google Scholar 

  49. Oliveira, R. G., Calderon, R. O., & Maggio, B. (1998). Surface behavior of myelin monolayers. Biochimica et Biophysica Acta, 1370(1), 127–137.

    Article  PubMed  CAS  Google Scholar 

  50. Feng, S.-S. (1999). Interpretation of mechanochemical properties of lipid bilayer vesicles from the equation of state or pressure–area measurement of the monolayer at the air–water or oil–water interface. Langmuir, 15(4), 998–1010.

    Article  CAS  Google Scholar 

  51. Cassera, M. B., Silber, A. M., & Gennaro, A. M. (2002). Differential effects of cholesterol on acyl chain order in erythrocyte membranes as a function of depth from the surface. An electron paramagnetic resonance (EPR) spin label study. Biophysical Chemistry, 99(2), 117–127.

    Article  PubMed  CAS  Google Scholar 

  52. Rossi, S., et al. (2007). Self-assembly of beta-cyclodextrin in water. 2. Electron spin resonance. Langmuir, 23(22), 10959–10967.

    Article  PubMed  CAS  Google Scholar 

  53. Sanchez, J. M., Turina, A. V., & Perillo, M. A. (2007). Spectroscopic probing of ortho-nitrophenol localization in phospholipid bilayers. Journal of Photochemistry and Photobiology B, 89(1), 56–62.

    Article  CAS  Google Scholar 

  54. Garcia, D. A., & Perillo, M. A. (2002). Flunitrazepam-membrane non-specific binding and unbinding: Two pathways with different energy barriers. Biophysical Chemistry, 95(2), 157–164.

    Article  PubMed  CAS  Google Scholar 

  55. Mukherjee, S., & Chattopadhyay, A. (2005). Monitoring the organization and dynamics of bovine hippocampal membranes utilizing Laurdan generalized polarization. Biochimica et Biophysica Acta, 1714(1), 43–55.

    Article  PubMed  CAS  Google Scholar 

  56. Mukherjee, S., et al. (2007). Dynamics and heterogeneity of bovine hippocampal membranes: Role of cholesterol and proteins. Biochimica et Biophysica Acta, 1768(9), 2130–2144.

    Article  PubMed  CAS  Google Scholar 

  57. Harris, F. M., Best, K. B., & Bell, J. D. (2002). Use of Laurdan fluorescence intensity and polarization to distinguish between changes in membrane fluidity and phospholipid order. Biochimica et Biophysica Acta, 1565(1), 123–128.

    Article  PubMed  CAS  Google Scholar 

  58. Stott, B. M., et al. (2008). Use of fluorescence to determine the effects of cholesterol on lipid behavior in sphingomyelin liposomes and erythrocyte membranes. Journal of Lipid Research, 49(6), 1202–1215.

    Article  PubMed  CAS  Google Scholar 

  59. Wilson-Ashworth, H. A., et al. (2006). Differential detection of phospholipid fluidity, order, and spacing by fluorescence spectroscopy of bis-pyrene, prodan, nystatin, and merocyanine 540. Biophysical Journal, 91(11), 4091–4101.

    Article  PubMed  CAS  Google Scholar 

  60. Wang, M. M., Sugar, I. P., & Chong, P. L. (1998). Role of the sterol superlattice in the partitioning of the antifungal drug nystatin into lipid membranes. Biochemistry, 37(34), 11797–11805.

    Article  PubMed  CAS  Google Scholar 

  61. Chong, P. L. (1994). Evidence for regular distribution of sterols in liquid crystalline phosphatidylcholine bilayers. Proceedings of the National Academy of Sciences of the United States of America, 91(21), 10069–10073.

    Article  PubMed  CAS  Google Scholar 

  62. Zidovetzki, R., & Levitan, I. (2007). Use of cyclodextrins to manipulate plasma membrane cholesterol content: Evidence, misconceptions and control strategies. Biochimica et Biophysica Acta, 1768(6), 1311–1324.

    Article  PubMed  CAS  Google Scholar 

  63. Li, G., & McGown, L. B. (1994). Molecular nanotube aggregates of beta- and gamma-cyclodextrins linked by diphenylhexatrienes. Science, 264(5156), 249–251.

    Article  PubMed  CAS  Google Scholar 

  64. Disalvo, E. A., et al. (2002). Physical chemistry of lipid interfaces: State of hydration, topological and electrical properties. In C. A. Condat & A. Baruzzi (Eds.), Resent research developements in Biophysical Chemistry (pp. 181–197). Kerala: Research Signpost.

    Google Scholar 

  65. Benavidez, E., & Arce, A. (2002). Effects of phosphorylation and cytoskeleton-affecting reagents on GABA(A) receptor recruitment into synaptosomes following acute stress. Pharmacology, Biochemistry and Behavior, 72(3), 497–506.

    Article  CAS  Google Scholar 

  66. M’Baye, G., et al. (2008). Liquid ordered and gel phases of lipid bilayers: Fluorescent probes reveal close fluidity but different hydration. Biophysical Journal, 95(3), 1217–1225.

    Article  PubMed  Google Scholar 

  67. Parasassi, T., et al. (1994). Cholesterol modifies water concentration and dynamics in phospholipid bilayers: A fluorescence study using Laurdan probe. Biophysical Journal, 66(3 Pt 1), 763–768.

    Article  PubMed  CAS  Google Scholar 

  68. Yin, J. J., et al. (1996). Effects of fumonisin B1 and (hydrolyzed) fumonisin backbone AP1 on membranes: A spin-label study. Archives of Biochemistry and Biophysics, 335, 13–22.

    Article  PubMed  CAS  Google Scholar 

  69. Dalskov, S., et al. (2005). Lipid raft localization of GABAA receptor and Na+, K+-ATPase in discrete microdomain clusters in rat cerebellar granule cells. Neurochemistry International, 46, 489–499.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially financed by Grants from CONICET, SECyT-Universidad Nacional de Córdoba, Mincyt-Pcia.Córdoba and ANPCyT from Argentina and Fundacão de Amparo à Pesquisa do Estado de São Paulo, Brasil. A.V.T. and M.A.P. are Career Investigators from CONICET, Argentina. S.S. holds a research fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María A. Perillo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turina, A.V., Schreier, S. & Perillo, M.A. Coupling Between GABAA-R Ligand-Binding Activity and Membrane Organization in β-Cyclodextrin-Treated Synaptosomal Membranes from Bovine Brain Cortex: New Insights from EPR Experiments. Cell Biochem Biophys 63, 17–33 (2012). https://doi.org/10.1007/s12013-012-9338-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9338-1

Keywords

Navigation