Skip to main content

Advertisement

Log in

The Protective Effect of Lasia spinosa (Linn.) Dissipates Chemical-Induced Cardiotoxicity in an Animal Model

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Lasia spinosa (L.) Thwaites is a medicinal plant of enormous traditional use with insufficient scientific evidence. This research screened the antioxidative effect of L. spinosa extracts by measuring the total phenolic content, total flavonoid content, DPPH free radical scavenging activity, ABTS scavenging activity, Iron-chelating activity, and Ferric reducing power followed by an evaluation of in vivo cardioprotective effect in doxorubicin-induced Wistar Albino rats. Phytochemical characterization was made by Gas Chromatography–Mass Spectroscopic analysis. L. spinosa showed an excellent antioxidative effect while methanol leaf extract (LSM) was found to be more potent than ethyl acetate leaf extract (LSE) in scavenging the free radicals. Intraperitoneal injection of doxorubicin caused a significant (P < 0.001) increase in lactate dehydrogenase (LDH), creatine kinase (CK-MB), C-reactive protein (CRP), and Cardiac troponin I. Pretreatment with orally administrated (LSM100 and LSM200 mg/kg b.w.) daily for 10 days showed a decrease in the cardiac markers, lipid profiles, especially triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL), and an increase of high-density lipoprotein (HDL) compared to the disease control group. LSM200 was found to significantly (P < 0.05) decrease the levels of CK-MB and LDH. It also restored TC, TG, and LDL levels compared to the doxorubicin-induced cardiac control group. The protective role of LSM was further confirmed by histopathological examination. This study thus demonstrates that L. spinosa methanol extract could be approached as an alternative supplement for cardiotoxicity, especially in the chemical-induced toxicity of cardiac tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be available upon request.

Abbreviations

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

ABTS:

2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

LDH:

Lactate dehydrogenase

CK-MB:

Creatine kinase

CRP:

C-reactive protein

LSM:

L. spinosa Methanol extract

ESL:

L. spinosa Ethyl acetate leaf extract

TG:

Triglyceride

TC:

Total cholesterol

LDL:

Low-density lipoprotein

HDL:

High-density lipoprotein

DOX:

Doxorubicin

ROS:

Reactive oxygen species

ETC:

Electron transport chain

NADH:

Nicotinamide adenine dinucleotide

eNOS:

Endothelial Nitric Oxide Synthase

NO:

Nitric oxide

GC–MS:

Gas chromatography–mass spectrometry

EI:

Electron impact ionization

TPC:

Total phenolic content

FCR:

Folin–Ciocalteu Reagents

GAE:

Gallic acid equivalent

TFC:

Total flavonoid content

QE:

Quercetin equivalent

IC50 :

The half-maximal inhibitory concentration

OECD:

Organization for Environmental Control Development

LD50 :

Lethal Dose 50

IP:

Intraperitoneal

LSM100:

L. spinosa Methanol extract (100 mg/kg /day bw)

LSM200:

L. spinosa Methanol extract (200 mg/kg/day bw)

LSM50:

L. spinosa Methanol extract 50 mg/kg/day bw

LSE100:

L. spinosa Ethyl acetate extract 100 mg/kg/day bw

LSE50:

L. spinosa Ethyl acetate extract 50 mg/kg/day bw

NBF:

10% Neutral-buffered formalin

H & E:

Eosin and hematoxylin

References

  1. Nebigil, C. G., & Désaubry, L. (2018). Updates in anthracycline-mediated cardiotoxicity. Frontiers in Pharmacology, 9, 1262.

    Article  CAS  Google Scholar 

  2. Gorini, S., De Angelis, A., Berrino, L., Malara, N., Rosano, G., & Ferraro, E. (2018). Chemotherapeutic drugs and mitochondrial dysfunction: Focus on doxorubicin, trastuzumab, and sunitinib. Oxidative Medicine and Cellular Longevity, 2018, 2018.

    Article  Google Scholar 

  3. Uygur, R., Aktas, C., Tulubas, F., Alpsoy, S., Topcu, B., & Ozen, O. A. (2014). Cardioprotective effects of fish omega-3 fatty acids on doxorubicin-induced cardiotoxicity in rats. Human and Experimental Toxicology, 33, 435–445.

    Article  CAS  Google Scholar 

  4. Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology, 52, 1213–1225.

    Article  CAS  Google Scholar 

  5. Volkova, M., & Russell, R. (2011). Anthracycline cardiotoxicity: Prevalence, pathogenesis, and treatment. Current Cardiology Reviews, 7, 214–220.

    Article  CAS  Google Scholar 

  6. Sandamali, J.A., Hewawasam, R.P., Jayatilaka, K.A., & Mudduwa, L.K. (2020). Cardioprotective potential of Murraya koenigii (L.) Spreng. leaf extract against doxorubicin-induced cardiotoxicity in rats. Evid Based Complement Alternat Med.

  7. Sacco, G., Bigioni, M., Evangelista, S., Goso, C., Manzini, S., & Maggi, C. A. (2001). Cardioprotective effects of zofenopril, a new angiotensin-converting enzyme inhibitor, on doxorubicin-induced cardiotoxicity in the rat. European Journal of Pharmacology, 414, 71–78.

    Article  CAS  Google Scholar 

  8. Berretta, M., Quagliariello, V., Maurea, N., Di Francia, R., Sharifi, S., Facchini, G., Rinaldi, L., Piezzo, M., Manuela, C., Nunnari, G., & Montopoli, M. (2020). Multiple effects of ascorbic acid against chronic diseases: Updated evidence from preclinical and clinical studies. Antioxidants (Basel), 9, 1182.

    Article  CAS  Google Scholar 

  9. Quagliariello, V., Berretta, M., Buccolo, S., Iovine, M., Paccone, A., Cavalcanti, E., Taibi, R., Montopoli, M., Botti, G., & Maurea, N. (2021). Polydatin reduces cardiotoxicity and enhances the anticancer effects of sunitinib by decreasing pro-oxidative stress, pro-inflammatory cytokines, and NLRP3 inflammasome expression. Frontiers in Oncology, 11, 680758.

    Article  Google Scholar 

  10. He, H., Luo, Y., Qiao, Y., Zhang, Z., Yin, D., Yao, J., You, J., & He, M. (2018). Curcumin attenuates doxorubicin-induced cardiotoxicity via suppressing oxidative stress and preventing mitochondrial dysfunction mediated by 14-3-3γ. Food & Function, 9, 4404–4418.

    Article  CAS  Google Scholar 

  11. Zhang, Q., & Wu, L. (2022). In Vitro and in vivo cardioprotective effects of curcumin against doxorubicin-induced cardiotoxicity: A systematic review. J Oncology, 2022, 7277562.

    Google Scholar 

  12. Kankanamge, S. U., Amarathunga, A. A. M. D. D. N., Sanjeewani, N. A., & Samanmali, B. L. C. (2017). Phytochemical and ethnopharmacological properties of Lasia spinosa (Kohila): A review. World Journal Pharmaceutical Research, 6, 1–9.

    CAS  Google Scholar 

  13. Rahman, A., Siddiqui, S. A., Oke-Altuntas, F., Okay, S., & Demirtas, G. Ü. L. F. (2019). Phenolic profile, essential oil composition and bioactivity of Lasia spinosa (L) thwaites. Brazilian Archives of Biology and Technology. https://doi.org/10.1590/1678-4324-2019170757

    Article  Google Scholar 

  14. Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using folin-ciocalteu reagent. Nature Protocols, 2, 875–877.

    Article  CAS  Google Scholar 

  15. Chang, C.-C., Yang, M.-H., Wen, H.-M., & Chern, J.-C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 2002, 10.

    Google Scholar 

  16. Brand-Williams, W., Cuvelier, M.-E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28, 25–30.

    Article  CAS  Google Scholar 

  17. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26, 1231–1237.

    Article  CAS  Google Scholar 

  18. Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239, 70–76.

    Article  CAS  Google Scholar 

  19. Rahman, M. A., Sultana, R., Bin Emran, T., Islam, M. S., Rahman, M. A., Chakma, J. S., Rashid, H. U., & Hasan, C. M. H. (2013). Effects of organic extracts of six Bangladeshi plants on in vitro thrombolysis and cytotoxicity. BMC Complement and Alternative Medicine, 13, 25.

    Article  Google Scholar 

  20. Zaoui, A., Cherrah, Y., Mahassini, N., Alaoui, K., Amarouch, H., & Hassar, M. (2002). Acute and chronic toxicity of N. sativa fixed oil. Phytomedicine, 9(1), 69–74.

    Article  CAS  Google Scholar 

  21. Al-Araby, S. Q., Rahman, M. A., Chowdhury, M. A., Das, R. R., Chowdhury, T. A., Hasan, C. M. M., et al. (2020). Padina tenuis (marine alga) attenuates oxidative stress and streptozotocin-induced type 2 diabetic indices in Wistar albino rats. South African Journal of Botany, 128, 87–100.

    Article  CAS  Google Scholar 

  22. Zhao, N., Woodle, M. C., & Mixson, A. J. (2018). Advances in delivery systems for doxorubicin. Journal Nanomed Nanotechnology, 9, 519.

    Article  Google Scholar 

  23. Wallace, K. B., Sardão, V. A., & Oliveira, P. J. (2020). Mitochondrial determinants of doxorubicin-induced cardiomyopathy. Circulation Research, 126, 926–941.

    Article  CAS  Google Scholar 

  24. Karimi, A., Majlesi, M., & Rafieian-Kopaei, M. (2015). Herbal versus synthetic drugs; beliefs and facts. Journal Nephropharmacology, 4, 27–30.

    CAS  Google Scholar 

  25. Sypniewska, G., & Kruszewski, S. (2021). Cardioprotective effects of nutraceuticals: focus on omega-3 polyunsaturated fatty acids. Nutrients, 13, 3184.

    Article  Google Scholar 

  26. Rashid, M. M., Rahman, M. A., Islam, M. S., Hossen, M. A., Reza, A. S. M. A., Ahmed, A. M. A., Alnajeebi, A. M., Babteen, N. A., Khan, M., Aboelenin, S. M., Soliman, M. M., Habib, A. H., & Alharbi, H. F. (2022). Incredible affinity of Kattosh with PPAR-γ receptors attenuates STZ-induced pancreas and kidney lesions evidenced in chemicobiological interactions. Journal of Cellular and Molecular Medicine, 26, 3343–3363.

    Article  CAS  Google Scholar 

  27. Katalinic, V., Milos, M., Kulisic, T., & Jukic, M. (2006). Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chemistry, 94, 550–557.

    Article  CAS  Google Scholar 

  28. Ahmed, F., & Urooj, A. (2012). Cardioprotective activity of standardized extract of Ficus racemosa stem bark against doxorubicin-induced toxicity. Pharmaceutical Biology, 50, 468–473.

    Article  Google Scholar 

  29. Kalyanaraman, B. (2020). Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: Have we been barking up the wrong tree? Redox Biology, 29, 101394.

    Article  CAS  Google Scholar 

  30. Ayza, M. A., Balasubramanian, R., & Berhe, A. H. (2020). Cardioprotective effect of Croton macrostachyus stem bark extract and solvent fractions on cyclophosphamide-induced cardiotoxicity in rats. Evid Based Complement Alternative Medicine, 2020, 2020.

    Article  Google Scholar 

  31. Derbali, A., Mnafgui, K., Affes, M., Derbali, F., Hajji, R., Gharsallah, N., et al. (2015). Cardioprotective effect of linseed oil against isoproterenol-induced myocardial infarction in Wistar rats: A biochemical and electrocardiographic study. Journal of Physiology and Biochemistry, 71, 281–288.

    Article  CAS  Google Scholar 

  32. Quagliariello, V., De Laurentiis, M., Cocco, S., Rea, G., Bonelli, A., Caronna, A., Lombari, M. C., Conforti, G., Berretta, M., Botti, G., & Maurea, N. (2020). NLRP3 as putative marker of ipilimumab-induced cardiotoxicity in the presence of hyperglycemia in estrogen-responsive and triple-negative breast cancer cells. International Journal of Molecular Sciences, 21, 7802.

    Article  CAS  Google Scholar 

  33. Mehdizadeh, R., Parizadeh, M.-R., Khooei, A.-R., Mehri, S., & Hosseinzadeh, H. (2013). Cardioprotective effect of saffron extract and safranal in isoproterenol-induced myocardial infarction in Wistar rats. Iranian Journal of Basic Medical Sciences, 16, 56.

    Google Scholar 

  34. Priscilla, D. H., & Prince, P. S. M. (2009). Cardioprotective effect of gallic acid on cardiac troponin-T, cardiac marker enzymes, lipid peroxidation products, and antioxidants in experimentally induced myocardial infarction in Wistar rats. Chemico-Biological Interactions, 179, 118–124.

    Article  CAS  Google Scholar 

  35. Shirole, T. S., Jagtap, A. G., Phadke, A. S., & Velhankar, R. D. (2013). Preventive effect of ethanolic extract of Inula racemosa on electrocardiographic, biochemical, and histopathological alterations in isoproterenol-induced myocardial infarction in rats. International Journal of Research In Phytochemical, 3, 13–22.

    Google Scholar 

  36. Subashini, R., & Rajadurai, M. (2011). Evaluation of cardioprotective efficacy of Nelumbo nucifera leaf extract on isoproterenol-induced myocardial infarction in Wistar rats. International Journal of Pharmaceutical Bioscience, 2, 285–294.

    Google Scholar 

  37. Adegbola, P., Aderibigbe, I., Hammed, W., & Omotayo, T. (2017). Antioxidant and anti-inflammatory medicinal plants have potential role in the treatment of cardiovascular disease: A review. American Journal of Cardiovascular Diseases, 7(2), 19–32.

    CAS  Google Scholar 

  38. Ojha, S., Al Taee, H., Goyal, S., Mahajan, U. B., Patil, C. R., Arya, D. S., et al. (2016). Cardioprotective potentials of plant-derived small molecules against doxorubicin associated cardiotoxicity. Oxidative Medicine and Cellular Longevity, 2016, 2016.

    Article  Google Scholar 

  39. Shah, S. M. A., Akram, M., Riaz, M., Munir, N., & Rasool, G. (2019). Cardioprotective potential of plant-derived molecules: A scientific and medicinal approach. Dose-Response, 17, 1559325819852243.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Laboratory of Alternative Medicine and Natural Product Research, Department of Biochemistry and Molecular Biology, to support the research’s progress. The authors are also thankful to Dr. Sheikh Bokhtear Uddin, Professor, Department of Botany, for his help to identify the sample, University of Chittagong, Chittagong-4331, Bangladesh,

Funding

NA.

Author information

Authors and Affiliations

Authors

Contributions

The research idea was proposed and designed by MAR. The investigation, formal analysis, and data curation were carried out by RA, MKJR, TAS, FYB, and SA. The initial manuscript was authored by MAR, RA, and MKJR, who also contributed to the data analysis. Visualization, validation, and writing—review and editing were done by FYN, MANK, and FS. All authors have gone through the manuscript and agreed to submit it to Cardiovascular Toxicology.

Corresponding author

Correspondence to Md. Atiar Rahman.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Additional information

Handling Editor: Christian Ellermann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akter, R., Rahman, M.A., Rafi, M.K.J. et al. The Protective Effect of Lasia spinosa (Linn.) Dissipates Chemical-Induced Cardiotoxicity in an Animal Model. Cardiovasc Toxicol 23, 32–45 (2023). https://doi.org/10.1007/s12012-022-09775-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-022-09775-1

Keywords

Navigation