Skip to main content
Log in

Chronic Exercise Mitigates the Effects of Sirtuin Inhibition by Salermide on Endothelium-Dependent Vasodilation

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Sirtuins are regulators of eNOS and endothelial function; however, no studies have examined the influence of exercise on sirtuin regulation of endothelial function. Effects of the novel sirtuin inhibitor, salermide, on vascular reactivity in rat aortas were investigated following exercise training of different durations. Male Wistar rats (8–9 months old) were divided into four groups (n = 10–12/group): sedentary (SED), 1 day (1D), 2 weeks (2WK), or 6 weeks (6WK) of exercise. Exercise consisted of running on a motor-driven treadmill at 15 m/min, 15% grade, for 40 min (1D) increased up to 1 h at the end of 2 weeks (2WK) and sustained for an additional 4 weeks (6WK). Dose responses to phenylephrine, sodium nitroprusside, and acetylcholine in the presence or absence of salermide (30 µM) were analyzed. SIRT1 and eNOS protein expression as well as nitrotyrosine levels were determined by immunoblotting. Superoxide dismutase activity was determined by colorimetric assay. Sirtuin inhibition significantly impaired acetylcholine-induced vasorelaxtion in aortas in SED, 1D, and 2WK endurance trained rats but not in 6WK. eNOS expression significantly increased ~ 2.0-fold in 1D, 2WK, and 6WK groups. SIRT1 expression and 3-nitrotyrosine levels were significantly increased in 1D and 2WK but were not significantly elevated in 6WK. SOD levels were significantly elevated in 6WK. These data suggest that chronic endurance training diminishes the role of sirtuins in regulating endothelium-dependent relaxation and appears to be related to changes in SIRT1 expression as well as redox status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Nelson, M. E., Rejeski, W. J., Blair, S. N., Duncan, P. W., Judge, J. O., King, A. C., Macera, C. A., & Castaneda-Sceppa, C. (2007). Physical activity and public health in older adults: Recommendation from the American College of Sports Medicine and the American Heart Association. Medicine and Science in Sports and Exercise, 39, 1435–1445.

    Article  Google Scholar 

  2. Green, D. J., Walsh, J. H., Maiorana, A., Burke, V., Taylor, R. R., & O’Driscoll, J. G. (2004). Comparison of resistance and conduit vessel nitric oxide-mediated vascular function in vivo: Effects of exercise training. Journal of Applied Physiology, 97, 749–755.

    Article  CAS  Google Scholar 

  3. Starnes, J. W., & Taylor, R. P. (2007). Exercise-induced cardioprotection: Endogenous mechanisms. Medicine and Science in Sports and Exercise, 39, 1537–1543.

    Article  Google Scholar 

  4. Hsu, C. P., Odewale, I., Alcendor, R. R., & Sadoshima, J. (2008). Sirt1 protects the heart from aging and stress. Bilogical Chemistry, 389, 221–231.

    CAS  Google Scholar 

  5. Mattagajasingh, I., Kim, C. S., Naqvi, A., Yamamori, T., Hoffman, T. A., Jung, S. B., DeRicco, J., Kasuno, K., & Irani, K. (2007). SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proceedings of the National Academy of Sciences USA, 104, 14855–14860.

    Article  CAS  Google Scholar 

  6. Donato, A. J., Magerko, K. A., Lawson, B. R., Durrant, J. R., Lesniewski, L. A., & Seals, D. R. (2011). SIRT-1 and vascular endothelial dysfunction with ageing in mice and humans. Journal of Physiology, 589, 4545–4554.

    Article  CAS  Google Scholar 

  7. Nisoli, E., Tonello, C., Cardile, A., Cozzi, V., Bracale, R., Tedesco, L., Falcone, S., Valerio, A., Cantoni, O., Clementi, E., Moncada, S., & Carruba, M. O. (2005). Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science, 310, 314–317.

    Article  CAS  Google Scholar 

  8. Guthikonda, S., & Haynes, W. G. (2006). Homocysteine: Role and implications in atherosclerosis. Current Atherosclerosis Reports, 8, 100–106.

    Article  CAS  Google Scholar 

  9. Fulco, M., Schiltz, R. L., Iezzi, S., King, M. T., Zhao, P., Kashiwaya, Y., Hoffman, E., Veech, R. L., & Sartorelli, V. (2003). Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Molecular Cell, 12, 51–62.

    Article  CAS  Google Scholar 

  10. Guarente, L. (2006). Sirtuins as potential targets for metabolic syndrome. Nature, 444, 868–874.

    Article  CAS  Google Scholar 

  11. White, A. T., & Schenk, S. (2012). NAD/NADH and skeletal muscle mitochondrial adaptations to exercise. American Journal of Physiology-Endocrinology and Metabolism, 303, E308–E321.

    Article  CAS  Google Scholar 

  12. Delp, M. D., McAllister, R. M., & Laughlin, M. H. (1993). Exercise training alters endothelium-dependent vasoreactivity of rat abdominal aorta. Journal of Applied Physiology, 75, 1354–1363.

    Article  CAS  Google Scholar 

  13. Kojda, G., & Hambrecht, R. (2005). Molecular mechanisms of vascular adaptations to exercise. Physical activity as an effective antioxidant therapy? Cardiovascular Research, 67(2), 187–97.

    Article  CAS  Google Scholar 

  14. Di Francescomarino, S., Sciartilli, A., Di Valerio, V., Di Baldassarre, A., & Gallina, S. (2009). The effect of physical exercise on endothelial function. Sports Medicine, 39, 797–812.

    Article  Google Scholar 

  15. Santos, L., Escande, C., & Denicola, A. (2016). Potential modulation of sirtuins by oxidative stress. Oxidative Medicine and Cellular Longevity, 2016, 9831825.

    PubMed  Google Scholar 

  16. Lara, E., Mai, A., Calvanese, V., Altucci, L., Lopez-Nieva, P., Martinez-Chantar, M. L., Varela-Rey, M., Rotili, D., Nebbioso, A., Ropero, S., Montoya, G., Oyarzabal, J., Velasco, S., Serrano, M., Witt, M., Villar-Garea, A., Imhof, A., Mato, J. M., Esteller, M., & Fraga, M. F. (2009). Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect. Oncogene, 28, 781–791.

    Article  CAS  Google Scholar 

  17. Yao, Q. P., Qi, Y. X., Zhang, P., Cheng, B. B., Yan, Z. Q., & Jiang, Z. L. (2013). SIRT1 and Connexin40 Mediate the normal shear stress-induced inhibition of the proliferation of endothelial cells co-cultured with vascular smooth muscle cells. Cellular Physiology and Biochemistry, 31(2–3), 389–399.

    Article  CAS  Google Scholar 

  18. Ali, T. K., Matragoon, S., Pillai, B. A., Liou, G. I., & El-Remessy, A. B. (2008). Peroxynitrite mediates retinal neurodegeneration by inhibiting nerve growth factor survival signaling in experimental and human diabetes. Diabetes, 57, 889–898.

    Article  CAS  Google Scholar 

  19. Suwa, M., Nakano, H., Radak, Z., & Kumagai, S. (2008). Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1alpha protein expressions in rat skeletal muscle. Metabolism, 57, 986–998.

    Article  CAS  Google Scholar 

  20. Gurd, B. J., Yoshida, Y., McFarlan, J. T., Holloway, G. P., Moyes, C. D., Heigenhauser, G. J. F., Spriet, L., & Bonen, A. (2011). Nuclear SIRT1 activity, but not protein content, regulates mitochondrial biogenesis in rat and human skeletal muscle. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 301, R67–R75.

    Article  CAS  Google Scholar 

  21. Chabi, B., Adhihetty, P. J., O’Leary, M. F. N., Menzies, K. J., & Hood, D. A. (2009). Relationship between Sirt1 expression and mitochondrial proteins during conditions of chronic muscle use and disuse. Journal of Applied Physiology, 107, 1730–1735.

    Article  CAS  Google Scholar 

  22. Huffman, D. M., Moellering, D. R., Grizzle, W. E., Stockard, C. R., Johnson, M. S., & Nagy, T. R. (2008). Effect of exercise and calorie restriction on biomarkers of aging in mice. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 294, R1618–R1627.

    Article  CAS  Google Scholar 

  23. Li, L., Mühlfeld, C., Niemann, B., Pan, R., Li, R., Hilfiker-Kleiner, D., Chen, Y., & Rohrbach, S. (2011). Mitochondrial biogenesis and PGC-1α deacetylation by chronic treadmill exercise: Differential response in cardiac and skeletal muscle. Basic Research in Cardiology, 106, 1221–1234.

    Article  CAS  Google Scholar 

  24. Cacicedo, J. M., Gauthier, M. S., Lebrasseur, N. K., Jasuja, R., Ruderman, N. B., & Ido, Y. (2011). Acute exercise activates AMPK and eNOS in the mouse aorta. American Journal of Physiology-Heart and Circulatory Physiology, 301, H1255–H1265.

    Article  CAS  Google Scholar 

  25. Sun, M. W., Zhong, M. F., Gu, J., Qian, F. L., Gu, J. Z., & Chen, H. (2008). Effects of different levels of exercise volume on endothelium-dependent vasodilation: Roles of nitric oxide synthase and heme oxygenase. Hypertension Research, 31, 805–816.

    Article  CAS  Google Scholar 

  26. Chen, Z., Peng, I. C., Cui, X., Li, Y. S., Chien, S., & Shyy, J. Y. J. (2010). Shear stress, SIRT1, and vascular homeostasis. Proceedings of the National Academy of Sciences, 107, 10268–10273.

    Article  CAS  Google Scholar 

  27. Potente, M., & Dimmeler, S. (2008). Emerging roles of SIRT1 in vascular endothelial homeostasis. Cell Cycle, 7, 2117–2122.

    Article  CAS  Google Scholar 

  28. Suvorava, T., & Kojda, G. (2007). Prevention of transient endothelial dysfunction in acute exercise: A friendly fire? Thrombosis and Haemostasis-Stuttgart, 97, 331.

    Article  CAS  Google Scholar 

  29. Ahsan, H. (2013). 3-Nitrotyrosine: A biomarker of nitrogen free radical species modified proteins in systemic autoimmunogenic conditions. Human Immunology, 74, 1392–1399.

    Article  CAS  Google Scholar 

  30. Adachi, T. (2010). Modulation of vascular sarco/endoplasmic reticulum calcium ATPase in cardiovascular pathophysiology. Advanced Pharmacology, 59, 165–195.

    Article  CAS  Google Scholar 

  31. Higashi, Y., & Yoshizumi, M. (2004). Exercise and endothelial function: Role of endothelium-derived nitric oxide and oxidative stress in healthy subjects and hypertensive patients. Pharmacology and Therapeutics, 102, 87.

    Article  CAS  Google Scholar 

  32. Gielen, S., Sandri, M., Erbs, S., & Adams, V. (2011). Exercise-induced modulation of endothelial nitric oxide production. Current Pharmaceutical Biotechnology, 12, 1375–1384.

    Article  CAS  Google Scholar 

  33. Zhang, J., Wang, C., Nie, H., Wu, D., & Ying, W. (2016). SIRT2 plays a significant role in maintaining the survival and energy metabolism of PIEC endothelial cells. International Journal of Physiology, Pathophysiology and Pharmacology, 8(3), 120.

    PubMed  PubMed Central  Google Scholar 

  34. Roque, F. R., Hernanz, R., Salaices, M., & Briones, A. M. (2013). Exercise training and cardiometabolic diseases: Focus on the vascular system. Current Hypertension Reports, 15, 204–214.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Robin Looft-Wilson for review of this manuscript.

Funding

This work was supported by the National Heart, Lung, and Blood Institute 1R15HL10842828-01A1 (MBH). This work was supported by Thomas F. and Kate Miller Jeffress Memorial Trust J-930 (MBH). This work was supported by The Charles Center Honors Fellowship (RMH).

Author information

Authors and Affiliations

Authors

Contributions

All authors whose names appear on the submission made substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data.

Corresponding author

Correspondence to M. Brennan Harris.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical Approval

Experiments were approved by the Institutional Animal Care and Use Committee of The College of William & Mary and adhered to the Guide for the Care and Use of Laboratory Animals published by the U.S. National Institutes of Health and the principles of laboratory animal care (NIH publication No. 86-23, revised 1985) were followed.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Handling Editor: Y. Robert Li.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harris, M.B., Hoffman, R.M. & Olesiak, M. Chronic Exercise Mitigates the Effects of Sirtuin Inhibition by Salermide on Endothelium-Dependent Vasodilation. Cardiovasc Toxicol 21, 790–799 (2021). https://doi.org/10.1007/s12012-021-09669-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09669-8

Keywords

Navigation