Skip to main content
Log in

Evaluation of Electrocardiographic Parameters and the Presence of Interatrial Block in Patients with Mad Honey Intoxication

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Mad honey intoxication (MHI) is a food-induced clinical condition that usually presents with cardiovascular symptoms and can lead to life-threatening arrhythmias if not diagnosed and treated early. No data exist in the literature on the presence of interatrial block (IAB) after food intoxication. In our study, we sought to investigate atrioventricular electrocardiography (ECG) parameters and determine the frequency of IAB in patients with MHI. In total, 76 patients diagnosed with MHI were included in our retrospective study. Twelve-lead ECGs were performed and participants were divided into two groups according to the presence of IAB in the reference ECG. The P maximum (Pmax), P minimum (Pmin), P dispersion (Pdisp), T peak to T end (Tp–Te) interval and QT dispersion (QTdisp) values were compared between the two groups. IAB was detected in 28 (35.5%) of 76 MHI patients included in the final analysis. Pmax duration (122 ± 8; p < 0.001) and PD (69 ± 11; p < 0.001) were significantly higher in the IAB ( +) group. During regression analysis, Pmax [odds ratio (OR) 1.158, 95% confidence interval (CI) 1.036–1.294; p = 0.010] and Pd (OR 1.086, 95% CI 1.001–1.017; p = 0.046) were independently associated with IAB. Pmax and Pd area under the receiver operating characteristic curve values for IAB prediction were 0.926 (95% CI 0.841–1,000; p < 0.001) and 0.872 (95% CI 0.765–0.974; p < 0.001), respectively. ECG changes are common in patients presenting with MHI. These patients need to be followed up clinically in terms of progression to arrhythmic events that may occur in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig.3

Similar content being viewed by others

References

  1. Yates, C., & Manini, A. F. (2012). Utility of the electrocardiogram in drug overdose and poisoning: Theoretical considerations and clinical implications. Current Cardiology Reviews, 8, 137–151.

    Article  Google Scholar 

  2. Silici, S., & Atayoglu, A. T. (2015). Mad honey intoxication: A systematic review on the 1199 cases. Food and Chemical Toxicology, 86, 282–290.

    Article  CAS  Google Scholar 

  3. Koca, I., & Koca, A. F. (2007). Poisoning by mad honey: A brief review. Food and Chemical Toxicology, 45, 1315–1318.

    Article  CAS  Google Scholar 

  4. Gunduz, A., Turedi, S., Russell, R. M., & Ayaz, F. A. (2008). Clinical review of grayanotoxin/mad honey poisoning past and present. Clinical Toxicology, 46, 437–442.

    Article  CAS  Google Scholar 

  5. Hodgson, E. (2012). Chapter fourteen—toxins and venoms. Progress in Molecular Biology and Translational Science, 112, 373–415.

    Article  CAS  Google Scholar 

  6. Jansen, S. A., Kleerekooper, I., Hofman, Z. L., Kappen, I. F., Stary-Weinzinger, A., & van der Heyden, M. A. (2012). Grayanotoxin poisoning: ‘mad honey disease’ and beyond. Cardiovascular Toxicology, 12, 208–215.

    Article  CAS  Google Scholar 

  7. Seyama, I., Yamaoka, K., Yakehiro, M., Yoshioka, Y., & Morihara, K. (1985). Is the site of action of grayanotoxin the sodium channel gating of squid axon? Japanese Journal of Physiology, 35, 401–410.

    Article  CAS  Google Scholar 

  8. Erenler, A. K. (2016). Cardiac effects of mad honey poisoning and its management in emergency department: A review from Turkey. Cardiovascular Toxicology, 16, 1–4.

    Article  CAS  Google Scholar 

  9. Kolecki, P. F., & Curry, S. C. (1997). Poisoning by sodium channel blocking agents. Critical Care Clinics, 13, 829–848.

    Article  CAS  Google Scholar 

  10. Bayés de Luna, A., Baranchuk, A., Alberto Escobar Robledo, L., Massó van Roessel, A., & Martínez-Sellés, M. (2017). Diagnosis of interatrial block. Journal of Geriatric Cardiology, 14, 161–165.

    PubMed  PubMed Central  Google Scholar 

  11. Bayes de Luna, A. J. (1979). Bloqueo a nivel auricular [block at the auricular level]. Revista Espanola de Cardiologia, 32, 5–10.

    CAS  PubMed  Google Scholar 

  12. Bazett, H. C. (1920). An analysis of the time-relations of electrocardiograms. Heart, 7, 353–370.

    Google Scholar 

  13. Salles, G. F., Cardoso, C. R., Leocadio, S. M., & Muxfeldt, E. S. (2008). Recent ventricular repolarization markers in resistant hypertension: Are they different from the traditional QT interval? American Journal of Hypertension, 21, 47–53.

    Article  Google Scholar 

  14. Catterall, W. A., Cestèle, S., Yarov-Yarovoy, V., Yu, F. H., Konoki, K., & Scheuer, T. (2007). Voltage-gated ion channels and gating modifier toxins. Toxicon, 49, 124–141.

    Article  CAS  Google Scholar 

  15. Maejima, H., Kinoshita, E., Seyama, I., & Yamaoka, K. (2003). Distinct sites regulating grayanotoxin binding and unbinding to D4S6 of Nav1.4 sodium channel as revealed by improved estimation of toxin sensitivity. Journal of Biological Chemistry, 278, 9464–9471.

    Article  CAS  Google Scholar 

  16. Benoit, E. (1998). Mécanisme(s) d’action des neurotoxines agissant sur l’inactivation des canaux sodium activés par le potentiel de membrane [mechanism of action of neurotoxins acting on the inactivation of voltage-gated sodium channels]. Comptes Rendus des Seances de la Societe de Biologie et de Ses Filiales, 192, 409–436.

    CAS  PubMed  Google Scholar 

  17. Seyama, I., Yamada, K., Kato, R., Masutani, T., & Hamada, M. (1988). Grayanotoxin opens Na channels from inside the squid axonal membrane. Biophysical Journal, 53, 271–274.

    Article  CAS  Google Scholar 

  18. Yakehiro, M., Seyama, I., & Narahashi, T. (1997). Kinetics of grayanotoxin evoked modification of sodium channels in squid giant axons. Pflugers Archiv: European Journal of Physiology, 433, 403–412.

    CAS  PubMed  Google Scholar 

  19. Yuki, T., Yamaoka, K., Yakehiro, M., & Seyama, I. (2001). State-dependent action of grayanotoxin I on Na(+) channels in frog ventricular myocytes. Journal of Physiology, 534, 777–790.

    Article  CAS  Google Scholar 

  20. Yakehiro, M., Yuki, T., Yamaoka, K., Furue, T., Mori, Y., Imoto, K., & Seyama, I. (2000). An analysis of the variations in potency of grayanotoxin analogs in modifying frog sodium channels of differing subtypes. Molecular Pharmacology, 58, 692–700.

    Article  CAS  Google Scholar 

  21. Aygun, A., Sahin, A., Karaca, Y., Turkmen, S., Turedi, S., Ahn, S. Y., Kim, S., & Gunduz, A. (2017). Grayanotoxin levels in blood, urine and honey and their association with clinical status in patients with mad honey intoxication. Turkish Journal of Emergency Medicine, 18, 29–33.

    Article  Google Scholar 

  22. Choi, H. L., Park, K. H., Park, J. S., Choi, H. Y., Kim, H., & Kim, S. M. (2017). Relationship between blood toxin level and clinical features in patients with grayanotoxin poisoning—six clinical cases. Clinical Toxicology (Philadelphia, PA), 55, 991–995.

    Article  CAS  Google Scholar 

  23. Othong, R., Devlin, J. J., & Kazzi, Z. N. (2015). Medical toxicologists’ practice patterns regarding drug-induced QT prolongation in overdose patients: A survey in the United States of America, Europe, and Asia Pacific region. Clinical Toxicology (Philadelphia, PA), 53, 204–209.

    Article  CAS  Google Scholar 

  24. de Luna, A. B., Massó-van Roessel, A., & Robledo, L. A. E. (2015). The diagnosis and clinical implications of interatrial block. European Cardiology Review, 10, 54–59.

    Article  Google Scholar 

  25. Bayés de Luna, A., Platonov, P., Cosio, F. G., Cygankiewicz, I., Pastore, C., Baranowski, R., Bayés-Genis, A., Guindo, J., Viñolas, X., Garcia-Niebla, J., Barbosa, R., Stern, S., & Spodick, D. (2012). Interatrial blocks. A separate entity from left atrial enlargement: A consensus report. Journal of Electrocardiology, 45, 445–451.

    Article  Google Scholar 

  26. Istolahti, T., Eranti, A., Huhtala, H., Lyytikäinen, L. P., Kähönen, M., Lehtimäki, T., Eskola, M., Anttila, I., Jula, A., Bayés de Luna, A., & Nikus, K. (2020). The prevalence and prognostic significance of interatrial block in the general population. Annals of Medicine, 52, 63–73.

    Article  Google Scholar 

  27. Alexander, B., Tse, G., Martinez-Selles, M., & Baranchuk, A. (2021). Atrial conduction disorders. Current Cardiology Reviews, 17, 68–73.

    Article  Google Scholar 

  28. Onat, F., Yegen, B. C., Lawrence, R., Oktay, A., & Oktay, S. (1991). Site of action grayanotoxins in mad honey in rats. Journal of Applied Toxicology, 11, 199–291.

    Article  CAS  Google Scholar 

  29. Yiğit, Z., Akdur, H., Ersanli, M., Ökçün, B., & Güven, Ö. (2003). The effect of exercise to P wave dispersion and its evaluation as a predictor of atrial fibrillation. Annals of Noninvasive Electrocardiology, 8, 308–312.

    Article  Google Scholar 

  30. Dogan, U., Dogan, E. A., Tekinalp, M., Tokgoz, O. S., Aribas, A., Akilli, H., Ozdemir, K., Gok, H., & Yuruten, B. (2012). P-wave dispersion for predicting paroxysmal atrial fibrillation in acute ischemic stroke. International Journal of Medical Sciences, 9, 108–114.

    Article  Google Scholar 

  31. Pérez-Riera, A. R., de Abreu, L. C., Barbosa-Barros, R., Grindler, J., Fernandes-Cardoso, A., & Baranchuk, A. (2016). P-wave dispersion: An update. Indian Pacing and Electrophysiology Journal, 16, 126–133.

    Article  Google Scholar 

  32. Bayram, N. A., Keles, T., Durmaz, T., Dogan, S., & Bozkurt, E. (2012). A rare cause of atrial fibrillation: Mad honey intoxication. Journal of Emergency Medicine, 43, e389–e391.

    Article  Google Scholar 

  33. Osken, A., Yaylacı, S., Aydın, E., Kocayigit, I., Cakar, M. A., Tamer, A., & Gündüz, H. (2012). Slow ventricular response atrial fibrillation related to mad honey poisoning. Journal of Cardiovascular Disease Research, 3, 245–247.

    Article  CAS  Google Scholar 

  34. Kalkan, A., Gökçe, M., & Memetoğlu, M. E. (2012). An unusual clinical state: Atrial fibrillation due to mad-honey intoxication. Anatolian Journal of Cardiology, 12, 365–366.

    PubMed  Google Scholar 

  35. Aliyev, F., Türkoglu, C., Celiker, C., Firatli, I., Alici, G., & Uzunhasan, I. (2009). Chronic mad honey intoxication syndrome: A new form of an old disease? Europace, 11, 954–956.

    Article  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, private, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to (1) substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data, (2) drafting the article or revising it critically for important intellectual content, and, (3) final approval of the version to be published.

Corresponding author

Correspondence to Altuğ Ösken.

Ethics declarations

Conflict of interest

The Authors declare that there is no conflict of interest.

Ethics Approval

This study was approved by the Sakarya University ethics committee.

Additional information

Handling Editor: Vincent FM Segers.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ösken, A., Aydın, E., Özcan, K.S. et al. Evaluation of Electrocardiographic Parameters and the Presence of Interatrial Block in Patients with Mad Honey Intoxication. Cardiovasc Toxicol 21, 772–780 (2021). https://doi.org/10.1007/s12012-021-09668-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09668-9

Keywords

Navigation