Skip to main content

Advertisement

Log in

Morphine Deteriorates Cisplatin-Induced Cardiotoxicity in Rats and Induces Dose-Dependent Cisplatin Chemoresistance in MCF-7 Human Breast Cancer Cells

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Morphine (MOR) is a strong analgesic that is often used in treatment of severe pains during cancer treatment, and thus might be concomitantly used with anticancer drugs as cisplatin (CP). The aim of the current study was to investigate the mechanisms by which MOR can affect CP-induced cardiotoxicity and to explore effects of MOR on the cytotoxic efficacy of CP. MOR (10 mg/kg/day i.p.) was administered to rats for 10 days, with or without 7.5 mg/kg CP single i.p. dose at day 5 of the experiment. In addition, MOR and/or CP were administered to MCF-7 cells to test their cytotoxicity. Compared to control, CP caused cardiotoxic effects manifested by significant increase in serum enzymatic markers; creatine kinase-MB and lactate dehydrogenase, with histopathological cardiac damage. In addition, CP caused cardiac oxidative stress, manifested by significant increased tissue lipid peroxidation product; malondialdehyde and nitric oxide, with significant decrease in tissue antioxidants as reduced glutathione, superoxide dismutase and catalase compared to control. Furthermore, CP significantly increased tissue proinflammatory cytokines; TNF-α and IL-6, as well as upregulated the apoptotic marker; caspase 3 compared to control. MOR/CP combination significantly deteriorated all tested parameters compared to CP alone. In MCF-7 breast cancer cells, administration of MOR in concentrations of 0.1, 1, 10 or 30 μM concomitantly with 1 or 10 μM CP caused dose-dependent reduction in CP-induced cytotoxicity in vitro. In conclusion, MOR administration might deteriorate CP-induced cardiotoxicity during cancer chemotherapy through oxidant, pro-inflammatory and apoptotic mechanisms, and might reduce CP chemotherapeutic efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CK-MB:

Creatine kinase-MB

CP:

Cisplatin

ELISA:

Enzyme-linked immunosorbent assay

GSH:

Reduced glutathione

IL-6:

Interleukin-6

LDH:

Lactate dehydrogenase

MCF-7:

Human breast cancer cell line named after the acronym of Michigan Cancer Foundation

MDA:

Malondialdehyde

MOR:

Morphine

NO:

Nitric oxide

SOD:

Superoxide dismutase

SRB:

Sulforhodamine B

TNF-α:

Tumor necrosis factor-α

References

  1. Garutti, M., Pelizzari, G., Bartoletti, M., Malfatti, M. C., Gerratana, L., Tell, G., & Puglisi, F. (2019). Platinum salts in patients with breast cancer: a focus on predictive factors. International Journal of Molecular Sciences, 20, ijms20143390.

    Article  Google Scholar 

  2. Oun, R., Moussa, Y. E., & Wheate, N. J. (2018). The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Transactions, 47, 6645–6653.

    Article  CAS  PubMed  Google Scholar 

  3. Hanchate, L. P., Sharma, S. R., & Madyalkar, S. (2017). Cisplatin induced acute myocardial infarction and dyslipidemia. Journal of Clinical and Diagnostic Research, 11, OD05–OD07.

    PubMed  Google Scholar 

  4. Dugbartey, G. J., Peppone, L. J., & de Graaf, I. A. (2016). An integrative view of cisplatin-induced renal and cardiac toxicities: Molecular mechanisms, current treatment challenges and potential protective measures. Toxicology, 371, 58–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Afsar, T., Razak, S., Almajwal, A., Shabbir, M., & Khan, M. R. (2019). Evaluating the protective potency of Acacia hydaspica R. Parker on histological and biochemical changes induced by Cisplatin in the cardiac tissue of rats. BMC Complementary and Alternative Medicine, 19, 182.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Aboud, H. M., Mahmoud, M. O., Abdeltawab, M. M., Shafiq, A. M., & Sabry, D. (2019). Preparation and appraisal of self-assembled valsartan-loaded amalgamated Pluronic F127/Tween 80 polymeric micelles: Boosted cardioprotection via regulation of Mhrt/Nrf2 and Trx1 pathways in cisplatin-induced cardiotoxicity. Journal of Drug Targeting, 28, 282–299.

    Article  PubMed  Google Scholar 

  7. Ma, W., Yang, L., Liu, H., Chen, P., Ren, H., & Ren, P. (2020). PAXX is a novel target to overcome resistance to doxorubicin and cisplatin in osteosarcoma. Biochemical and Biophysical Research Communications, 521, 204–211.

    Article  CAS  PubMed  Google Scholar 

  8. Amable, L. (2016). Cisplatin resistance and opportunities for precision medicine. Pharmacological Research, 106, 27–36.

    Article  CAS  PubMed  Google Scholar 

  9. Staff, N. P., Cavaletti, G., Islam, B., Lustberg, M., Psimaras, D., & Tamburin, S. (2019). Platinum-induced peripheral neurotoxicity: from pathogenesis to treatment. Journal of the Peripheral Nervous System, 24(Suppl 2), S26–S39.

    CAS  PubMed  Google Scholar 

  10. Sommer, C., Klose, P., Welsch, P., Petzke, F., & Häuser, W. (2020). Opioids for chronic non-cancer neuropathic pain. An updated systematic review and meta-analysis of efficacy, tolerability and safety in randomized placebo-controlled studies of at least 4 weeks duration. European Journal of Pain, 24, 3–18.

    Article  PubMed  Google Scholar 

  11. Schuster, M., Bayer, O., Heid, F., & Laufenberg-Feldmann, R. (2018). Opioid rotation in cancer pain treatment. Deutsches Ärzteblatt International, 115, 135–142.

    PubMed  PubMed Central  Google Scholar 

  12. Skrabalova, J., Karlovska, I., Hejnova, L., & Novotny, J. (2018). Protective effect of morphine against the oxidant-induced injury in H9c2 cells. Cardiovascular Toxicology, 18, 374–385.

    Article  CAS  PubMed  Google Scholar 

  13. Chen, Z., Spahn, D. R., Zhang, X., Liu, Y., Chu, H., & Liu, Z. (2016). Morphine postconditioning protects against reperfusion injury: the role of protein kinase C-epsilon, extracellular signal-regulated kinase 1/2 and mitochondrial permeability transition pores. Cellular Physiology and Biochemistry, 39, 1930–1940.

    Article  CAS  PubMed  Google Scholar 

  14. Hole, L. D., Larsen, T. H., Fossan, K. O., Limé, F., & Schjøtt, J. (2014). Morphine enhances doxorubicin-induced cardiotoxicity in the rat. Cardiovascular Toxicology, 14, 251–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cao, L. H., Li, H. T., Lin, W. Q., Tan, H. Y., Xie, L., Zhong, Z. J., & Zhou, J. H. (2016). Morphine, a potential antagonist of cisplatin cytotoxicity, inhibits cisplatin-induced apoptosis and suppression of tumor growth in nasopharyngeal carcinoma xenografts. Science and Reports, 6, 18706.

    Article  CAS  Google Scholar 

  16. Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302–310.

    Article  CAS  PubMed  Google Scholar 

  17. Sastry, K. V., Moudgal, R. P., Mohan, J., Tyagi, J. S., & Rao, G. S. (2002). Spectrophotometric determination of serum nitrite and nitrate by copper-cadmium alloy. Analytical Biochemistry, 306, 79–82.

    Article  CAS  PubMed  Google Scholar 

  18. El-Sheikh, A. A., Abdelzaher, W. Y., Gad, A. A., & Abdel-Gaber, S. A. (2019). Purine versus non-purine xanthine oxidase inhibitors against cyclophosphamide-induced cardiac and bone marrow toxicity in rats. Human Experiment of Toxicology, 39, 249–261.

    Article  Google Scholar 

  19. Vichai, V., & Kirtikara, K. (2006). Sulforhodamine B colorimetric assay for cytotoxicity screening. Nature Protocols, 1, 1112–1116.

    Article  CAS  PubMed  Google Scholar 

  20. Lin, M. T., Ko, J. L., Liu, T. C., Chao, P. T., & Ou, C. C. (2018). Protective effect of D-methionine on body weight loss, anorexia, and nephrotoxicity in cisplatin-induced chronic toxicity in rats. Integrative Cancer Therapies, 17, 813–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aminian, A., Javadi, S., Rahimian, R., Dehpour, A. R., Asadi, A. F., Moghaddas, P., & Mehr, S. E. (2016). Enhancement of cisplatin nephrotoxicity by morphine and its attenuation by the opioid antagonist naltrexone. Acta Medica Iranica, 54, 422–429.

    PubMed  Google Scholar 

  22. Samarghandian, S., Afshari, R., & Farkhondeh, T. (2014). Effect of long-term treatment of morphine on enzymes, oxidative stress indices and antioxidant status in male rat liver. Int J Clin Exper Med, 7, 1449–1453.

    CAS  Google Scholar 

  23. Zhao, L. (2019). Protective effects of trimetazidine and coenzyme Q10 on cisplatin-induced cardiotoxicity by alleviating oxidative stress and mitochondrial dysfunction. Anatolian Journal of Cardiology, 22, 232–239.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mahmoudi, S., Farshid, A. A., Tamaddonfard, E., Imani, M., & Noroozinia, F. (2019). Behavioral, histopathological, and biochemical evaluations on the effects of cinnamaldehyde, naloxone, and their combination in morphine-induced cerebellar toxicity. Drug and Chemical Toxicology, 25, 1–12.

    Google Scholar 

  25. Arabian, M., Aboutaleb, N., Soleimani, M., Ajami, M., Habibey, R., Rezaei, Y., & Pazoki-Toroudi, H. (2018). Preconditioning with morphine protects hippocampal CA1 neurons from ischemia-reperfusion injury via activation of the mTOR pathway. Canadian Journal of Physiology and Pharmacology, 96, 80–87.

    Article  CAS  PubMed  Google Scholar 

  26. Amini-Khoei, H., Hosseini, M. J., Momeny, M., Rahimi-Balaei, M., Amiri, S., Haj-Mirzaian, A., Khedri, M., Jahanabadi, S., Mohammadi-Asl, A., Mehr, S. E., & Dehpour, A. R. (2016). Morphine attenuated the cytotoxicity induced by arsenic trioxide in H9c2 cardiomyocytes. Biological Trace Element Research, 173, 132–139.

    Article  CAS  PubMed  Google Scholar 

  27. Rajani, S. F., Imani, A., Faghihi, M., Izad, M., Kardar, G. A., & Salehi, Z. (2019). Post-infarct morphine treatment mitigates left ventricular remodeling and dysfunction in a rat model of ischemia-reperfusion. European Journal of Pharmacology, 847, 61–71.

    Article  CAS  PubMed  Google Scholar 

  28. Doyle, H. H., & Murphy, A. Z. (2018). Sex-dependent influences of morphine and its metabolites on pain sensitivity in the rat. Physiology & Behavior, 187, 32–41.

    Article  CAS  Google Scholar 

  29. Mansouri, M. T., Naghizadeh, B., Ghorbanzadeh, B., Amirgholami, N., Houshmand, G., & Alboghobeish, S. (2020). Venlafaxine inhibits naloxone-precipitated morphine withdrawal symptoms: role of inflammatory cytokines and nitric oxide. Metabolic Brain Disease, 35, 305–313.

    Article  CAS  PubMed  Google Scholar 

  30. Amri, J., Sadegh, M., Moulaei, N., & Palizvan, M. R. (2018). Transgenerational modification of hippocampus TNF-alpha and S100B levels in the offspring of rats chronically exposed to morphine during adolescence. American Journal of Drug and Alcohol Abuse, 44, 95–102.

    Article  Google Scholar 

  31. Lu, R. B., Wang, T. Y., Lee, S. Y., Chen, S. L., Chang, Y. H., Chen, P. S., Lin, S. H., Chu, C. H., Huang, S. Y., Tzeng, N. S., Lee, H., Chen, K. C., Yang, Y. K., Chen, P., Chen, S. H., & Hong, J. S. (2019). Correlation between interleukin-6 levels and methadone maintenance therapy outcomes. Drug and Alcohol Dependence, 204, 107516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, M. C., Yu, J. H., Yu, S. S., Chi, Y. Y., & Xiang, Y. B. (2015). MicroRNA-873 inhibits morphine-induced macrophage apoptosis by elevating A20 expression. Pain Medicine, 16, 1993–1999.

    Article  PubMed  Google Scholar 

  33. Taye, A., & El-Sheikh, A. A. (2013). Lectin-like oxidized low-density lipoprotein receptor 1 pathways. European Journal of Clinical Investigation, 43, 740–745.

    Article  CAS  PubMed  Google Scholar 

  34. Joshi, J. C., Ray, A., & Gulati, K. (2014). Differential modulatory effects of morphine on acute and chronic stress induced neurobehavioral and cellular markers in rats. European Journal of Pharmacology, 729, 17–21.

    Article  CAS  PubMed  Google Scholar 

  35. Meza-Morales, W., Estévez-Carmona, M. M., Alvarez-Ricardo, Y., Obregón-Mendoza, M. A., Cassani, J., Ramírez-Apan, M. T., Escobedo-Martínez, C., Soriano-García, M., Reynolds, W. F., & Enríquez, R. G. (2019). Full structural characterization of homoleptic complexes of diacetylcurcumin with Mg, Zn, Cu, and Mn: cisplatin-level cytotoxicity in vitro with minimal acute toxicity in vivo. Molecules, 24, 1598.

    Article  CAS  PubMed Central  Google Scholar 

  36. Cao, W. Q., Zhai, X. Q., Ma, J. W., Fu, X. Q., Zhao, B. S., Zhang, P., & Fu, X. Y. (2020). Natural borneol sensitizes human glioma cells to cisplatin-induced apoptosis by triggering ROS-mediated oxidative damage and regulation of MAPKs and PI3K/AKT pathway. Pharmaceutical Biology, 58, 72–79.

    Article  CAS  PubMed  Google Scholar 

  37. Ghavami, G., & Sardari, S. (2020). Synergistic effect of vitamin c with cisplatin for inhibiting proliferation of gastric cancer cells. Iran Biomedical Journal, 24, 119–127.

    Article  PubMed  Google Scholar 

  38. Niu, D. G., Peng, F., Zhang, W., Guan, Z., Zhao, H. D., Li, J. L., Wang, K. L., Li, T. T., Zhang, Y., Zheng, F. M., Xu, F., Han, Q. N., Gao, P., Wen, Q. P., & Liu, Q. (2015). Morphine promotes cancer stem cell properties, contributing to chemoresistance in breast cancer. Oncotarget, 6, 3963–3976.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen, Y., Qin, Y., Li, L., Chen, J., Zhang, X., & Xie, Y. (2017). Morphine can inhibit the growth of breast cancer MCF-7 cells by arresting the cell cycle and inducing apoptosis. Biological &/and Pharmaceutical Bulletin, 40, 1686–1692.

    Article  CAS  Google Scholar 

  40. Nishiwada, T., Kawaraguchi, Y., Uemura, K., & Kawaguchi, M. (2019). Morphine inhibits cell viability and growth via suppression of vascular endothelial growth factor in human oral cancer HSC-3 cells. Journal of Anesthesia, 33, 408–415.

    Article  PubMed  Google Scholar 

  41. Amini, K., Zhaleh, H., & Tahvilian, R. (2019). Effects of low-dose morphine suppress methamphetamine-induced cell death by inhibiting the ROS generation and caspase-3 activity. Bratislavske Lekarske Listy, 120, 336–343.

    CAS  PubMed  Google Scholar 

  42. Morsy, M. A., Younis, N. S., El-Sheikh, A. A. K., Al Turaifi, F. H., El-Daly, M., & Mohafez, O. M. (2020). Protective mechanisms of piperine against acetaminophen-induced hepatotoxicity may be mediated through TGFBRAP1. European Review for Medical and Pharmacological Sciences, 24, 10169–10180.

    CAS  PubMed  Google Scholar 

  43. Morsy, M. A., El-Sheikh, A. A. K., Ibrahim, A. R. N., Venugopala, K. N., & Kandeel, M. (2020). In silico and in vitro identification of secoisolariciresinol as a re-sensitizer of P-glycoprotein-dependent doxorubicin-resistance NCI/ADR-RES cancer cells. PeerJ, 8, e9163.

    Article  PubMed  PubMed Central  Google Scholar 

  44. El-Sheikh, A. A., Morsy, M. A., & Okasha, A. M. (2017). Inhibition of NF-kappaB/TNF-alpha pathway may be involved in the protective effect of resveratrol against cyclophosphamide-induced multi-organ toxicity. Immunopharmacology and Immunotoxicology, 39, 180–187.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by Deanship of Scientific Research at Princess Nourah bint Abdulrahman University (Grant No# 240/S/39).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azza A. K. El-Sheikh.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethical Approval

The procedures of the experiments were ethically approved by the Institutional Review Board of Princess Nourah bint Abdulrahman University, Saudi Arabia (IRB number 17-0194).

Additional information

Handling Editor: Y. James Kang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sheikh, A.A.K., Khired, Z. Morphine Deteriorates Cisplatin-Induced Cardiotoxicity in Rats and Induces Dose-Dependent Cisplatin Chemoresistance in MCF-7 Human Breast Cancer Cells. Cardiovasc Toxicol 21, 553–562 (2021). https://doi.org/10.1007/s12012-021-09646-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09646-1

Keywords

Navigation