Skip to main content
Log in

Exercise and Doxorubicin Treatment Modulate Cardiac Mitochondrial Quality Control Signaling

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The cross-tolerance effect of exercise against heart mitochondrial-mediated quality control, remodeling and death-related mechanisms associated with sub-chronic Doxorubicin (DOX) treatment is yet unknown. We therefore analyzed the effects of two distinct chronic exercise models (endurance treadmill training—TM and voluntary free wheel activity—FW) performed during the course of the sub-chronic DOX treatment on mitochondrial susceptibility to permeability transition pore (mPTP), apoptotic and autophagic signaling and mitochondrial dynamics. Male Sprague–Dawley rats were divided into six groups (n = 6 per group): saline sedentary (SAL + SED), SAL + TM (12-weeks treadmill), SAL + FW (12-weeks voluntary free-wheel), DOX + SED [7-weeks sub-chronic DOX treatment (2 mg kg−1 week−1)], DOX + TM and DOX + FW. Apoptotic signaling and mPTP regulation were followed by measuring caspase 3, 8 and 9 activities, Bax, Bcl2, CypD, ANT, and cophilin expression. Mitochondrial dynamics (Mfn1, Mfn2, OPA1 and DRP1) and auto(mito)phagy (LC3, Beclin1, Pink1, Parkin and p62)-related proteins were semi-quantified. DOX treatment results in augmented mPTP susceptibility and apoptotic signaling (caspases 3, 8 and 9 and Bax/Bcl2 ratio). Moreover, DOX decreased the expression of fusion-related proteins (Mfn1, Mfn2, OPA1), increased DRP1 and the activation of auto(mito)phagy signaling. TM and FW prevented DOX-increased mPTP susceptibility and apoptotic signaling, alterations in mitochondrial dynamics and inhibits DOX-induced increases in auto(mito)phagy signaling. Collectively, our results suggest that both used chronic exercise models performed before and during the course of sub-chronic DOX treatment limit cardiac mitochondrial-driven apoptotic signaling and regulate alterations in mitochondrial dynamics and auto(mito)phagy in DOX-treated animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Andreyev, A. Y., Fahy, B., & Fiskum, G. (1998). Cytochrome c release from brain mitochondria is independent of the mitochondrial permeability transition. FEBS Letters, 439, 373–376.

    Article  CAS  PubMed  Google Scholar 

  2. Ascensao, A., Ferreira, R., & Magalhaes, J. (2007). Exercise-induced cardioprotection–biochemical, morphological and functional evidence in whole tissue and isolated mitochondria. International Journal of Cardiology, 117, 16–30.

    Article  PubMed  Google Scholar 

  3. Ascensao, A., Ferreira, R., Oliveira, P. J., & Magalhaes, J. (2006). Effects of endurance training and acute Doxorubicin treatment on rat heart mitochondrial alterations induced by in vitro anoxia-reoxygenation. Cardiovascular Toxicology, 6, 159–172.

    Article  CAS  PubMed  Google Scholar 

  4. Ascensao, A., Lumini-Oliveira, J., Machado, N. G., Ferreira, R. M., Goncalves, I. O., Moreira, A. C., et al. (2011). Acute exercise protects against calcium-induced cardiac mitochondrial permeability transition pore opening in doxorubicin-treated rats. Clinical science (Lond), 120, 37–49.

    Article  CAS  Google Scholar 

  5. Ascensao, A., Lumini-Oliveira, J., Oliveira, P. J., & Magalhaes, J. (2011). Mitochondria as a target for exercise-induced cardioprotection. Current Drug Targets, 12, 860–871.

    Article  CAS  PubMed  Google Scholar 

  6. Ascensao, A., Magalhaes, J., Soares, J., Ferreira, R., Neuparth, M., Marques, F., et al. (2005). Endurance training attenuates doxorubicin-induced cardiac oxidative damage in mice. International Journal of Cardiology, 100, 451–460.

    Article  PubMed  Google Scholar 

  7. Ascensao, A., Magalhaes, J., Soares, J. M., Ferreira, R., Neuparth, M. J., Marques, F., et al. (2005). Moderate endurance training prevents doxorubicin-induced in vivo mitochondriopathy and reduces the development of cardiac apoptosis. American Journal of Physiology Heart and Circulatory Physiology, 289, H722–H731.

    Article  CAS  PubMed  Google Scholar 

  8. Ascensao, A., Oliveira, P. J., & Magalhaes, J. (2012). Exercise as a beneficial adjunct therapy during Doxorubicin treatment–role of mitochondria in cardioprotection. International Journal of Cardiology, 156, 4–10.

    Article  PubMed  Google Scholar 

  9. Baines, C. P., Kaiser, R. A., Sheiko, T., Craigen, W. J., & Molkentin, J. D. (2007). Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nature Cell Biology, 9, 550–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bernstein, B. W., & Bamburg, J. R. (2010). ADF/cofilin: A functional node in cell biology. Trends in Cell Biology, 20, 187–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bhattacharya, S. K., Thakar, J. H., Johnson, P. L., & Shanklin, D. R. (1991). Isolation of skeletal muscle mitochondria from hamsters using an ionic medium containing ethylenediaminetetraacetic acid and nagarse. Analytical Biochemistry, 192, 344–349.

    Article  CAS  PubMed  Google Scholar 

  12. Broekemeier, K. M., Dempsey, M. E., & Pfeiffer, D. R. (1989). Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. Journal of Biological Chemistry, 264, 7826–7830.

    CAS  PubMed  Google Scholar 

  13. Campello, S., & Scorrano, L. (2010). Mitochondrial shape changes: Orchestrating cell pathophysiology. EMBO Reports, 11, 678–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carreira, R. S., Lee, Y., Ghochani, M., Gustafsson, A. B., & Gottlieb, R. A. (2010). Cyclophilin D is required for mitochondrial removal by autophagy in cardiac cells. Autophagy, 6, 462–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carvalho, F. S., Burgeiro, A., Garcia, R., Moreno, A. J., Carvalho, R. A., & Oliveira, P. J. (2014). Doxorubicin-induced cardiotoxicity: From bioenergetic failure and cell death to cardiomyopathy. Medicinal Research Reviews, 34, 106–135.

    Article  CAS  PubMed  Google Scholar 

  16. Chan, D. C. (2006). Mitochondria: Dynamic organelles in disease, aging, and development. Cell, 125, 1241–1252.

    Article  CAS  PubMed  Google Scholar 

  17. Chan, D. C. (2006). Mitochondrial fusion and fission in mammals. Annual Review of Cell and Developmental Biology, 22, 79–99.

    Article  CAS  PubMed  Google Scholar 

  18. Cheng, E. H., Sheiko, T. V., Fisher, J. K., Craigen, W. J., & Korsmeyer, S. J. (2003). VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science, 301, 513–517.

    Article  CAS  PubMed  Google Scholar 

  19. Childs, A. C., Phaneuf, S. L., Dirks, A. J., Phillips, T., & Leeuwenburgh, C. (2002). Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2: Bax ratio. Cancer Research, 62, 4592–4598.

    CAS  PubMed  Google Scholar 

  20. Clark, I. E., Dodson, M. W., Jiang, C., Cao, J. H., Huh, J. R., Seol, J. H., et al. (2006). Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature, 441, 1162–1166.

    Article  CAS  PubMed  Google Scholar 

  21. Dimitrakis, P., Romay-Ogando, M. I., Timolati, F., Suter, T. M., & Zuppinger, C. (2012). Effects of doxorubicin cancer therapy on autophagy and the ubiquitin-proteasome system in long-term cultured adult rat cardiomyocytes. Cell and Tissue Research, 350, 361–372.

    Article  CAS  PubMed  Google Scholar 

  22. Dolinsky, V. W., Rogan, K. J., Sung, M. M., Zordoky, B. N., Haykowsky, M. J., Young, M. E., et al. (2013). Both aerobic exercise and resveratrol supplementation attenuate doxorubicin-induced cardiac injury in mice. American journal of physiology. Endocrinology and metabolism, 305, E243–E253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fontaine, E., Eriksson, O., Ichas, F., & Bernardi, P. (1998). Regulation of the permeability transition pore in skeletal muscle mitochondria. Modulation By electron flow through the respiratory chain complex I. Journal of Biological Chemistry, 273, 12662–12668.

    Article  CAS  PubMed  Google Scholar 

  24. Frank, S., Gaume, B., Bergmann-Leitner, E. S., Leitner, W. W., Robert, E. G., Catez, F., et al. (2001). The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Developmental Cell, 1, 515–525.

    Article  CAS  PubMed  Google Scholar 

  25. Gharanei, M., Hussain, A., Janneh, O., & Maddock, H. (2013). Attenuation of doxorubicin-induced cardiotoxicity by mdivi-1: A mitochondrial division/mitophagy inhibitor. PLoS ONE, 8, e77713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gomes, L. C., & Scorrano, L. (2008). High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. Biochimica et Biophysica Acta, 1777, 860–866.

    Article  CAS  PubMed  Google Scholar 

  27. Gornall, A. G., Bardawill, C. J., & David, M. M. (1949). Determination of serum proteins by means of the biuret reaction. Journal of Biological Chemistry, 177, 751–766.

    CAS  PubMed  Google Scholar 

  28. Gottlieb, R. A., & Carreira, R. S. (2010). Autophagy in health and disease. 5. Mitophagy as a way of life. American Journal of Physiology. Cell Physiology, 299, C203–C210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Green, P. S., & Leeuwenburgh, C. (2002). Mitochondrial dysfunction is an early indicator of doxorubicin-induced apoptosis. Biochimica et Biophysica Acta, 1588, 94–101.

    Article  CAS  PubMed  Google Scholar 

  30. Gustafsson, A. B., & Gottlieb, R. A. (2008). Heart mitochondria: Gates of life and death. Cardiovascular Research, 77, 334–343.

    Article  CAS  PubMed  Google Scholar 

  31. Hoshino, A., Mita, Y., Okawa, Y., Ariyoshi, M., Iwai-Kanai, E., Ueyama, T., et al. (2013). Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nature Communications, 4, 2308.

    Article  PubMed  Google Scholar 

  32. Jang, Y. M., Kendaiah, S., Drew, B., Phillips, T., Selman, C., Julian, D., et al. (2004). Doxorubicin treatment in vivo activates caspase-12 mediated cardiac apoptosis in both male and female rats. FEBS Letters, 577, 483–490.

    Article  CAS  PubMed  Google Scholar 

  33. Klamt, F., Zdanov, S., Levine, R. L., Pariser, A., Zhang, Y., Zhang, B., et al. (2009). Oxidant-induced apoptosis is mediated by oxidation of the actin-regulatory protein cofilin. Nature Cell Biology, 11, 1241–1246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Klionsky, D. J., et al. (2016). Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 12, 1–222.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kobayashi, S., Volden, P., Timm, D., Mao, K., Xu, X., & Liang, Q. (2010). Transcription factor GATA4 inhibits doxorubicin-induced autophagy and cardiomyocyte death. Journal of Biological Chemistry, 285, 793–804.

    Article  CAS  PubMed  Google Scholar 

  36. Krauskopf, A., Eriksson, O., Craigen, W. J., Forte, M. A., & Bernardi, P. (2006). Properties of the permeability transition in VDAC1(-/-) mitochondria. Biochimica et Biophysica Acta, 1757, 590–595.

    Article  CAS  PubMed  Google Scholar 

  37. Kubli, D. A., & Gustafsson, A. B. (2012). Mitochondria and mitophagy: The yin and yang of cell death control. Circulation Research, 111, 1208–1221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kumar, D., Kirshenbaum, L. A., Li, T., Danelisen, I., & Singal, P. K. (2001). Apoptosis in adriamycin cardiomyopathy and its modulation by probucol. Antioxidants & Redox Signaling, 3, 135–145.

    Article  CAS  Google Scholar 

  39. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  40. Lee, Y., Lee, H. Y., Hanna, R. A., & Gustafsson, A. B. (2011). Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. American Journal of Physiology Heart and Circulatory Physiology, 301, H1924–H1931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, Y. J., Jeong, S. Y., Karbowski, M., Smith, C. L., & Youle, R. J. (2004). Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Molecular Biology of the Cell, 15, 5001–5011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liesa, M., Palacin, M., & Zorzano, A. (2009). Mitochondrial dynamics in mammalian health and disease. Physiological Reviews, 89, 799–845.

    Article  CAS  PubMed  Google Scholar 

  43. Lin, S. T., Chou, H. C., Chen, Y. W., & Chan, H. L. (2013). Redox-proteomic analysis of doxorubicin-induced altered thiol activity in cardiomyocytes. Molecular BioSystems, 9, 447–456.

    Article  CAS  PubMed  Google Scholar 

  44. Locke, M., Noble, E. G., & Atkinson, B. G. (1990). Exercising mammals synthesize stress proteins. American Journal of Physiology, 258, C723–C729.

    Article  CAS  PubMed  Google Scholar 

  45. Lu, L., Wu, W., Yan, J., Li, X., Yu, H., & Yu, X. (2009). Adriamycin-induced autophagic cardiomyocyte death plays a pathogenic role in a rat model of heart failure. International Journal of Cardiology, 134, 82–90.

    Article  PubMed  Google Scholar 

  46. Lumini-Oliveira, J., Magalhaes, J., Pereira, C. V., Moreira, A. C., Oliveira, P. J., & Ascensao, A. (2011). Endurance training reverts heart mitochondrial dysfunction, permeability transition and apoptotic signaling in long-term severe hyperglycemia. Mitochondrion, 11, 54–63.

    Article  CAS  PubMed  Google Scholar 

  47. Marechal, X., Montaigne, D., Marciniak, C., Marchetti, P., Hassoun, S. M., Beauvillain, J. C., et al. (2011). Doxorubicin-induced cardiac dysfunction is attenuated by ciclosporin treatment in mice through improvements in mitochondrial bioenergetics. Clinical science (London), 121, 405–413.

    Article  CAS  Google Scholar 

  48. Marques-Aleixo, I., Santos-Alves, E., Mariani, D., Rizo-Roca, D., Padrao, A. I., Rocha-Rodrigues, S., et al. (2015). Physical exercise prior and during treatment reduces sub-chronic doxorubicin-induced mitochondrial toxicity and oxidative stress. Mitochondrion, 20, 22–33.

    Article  CAS  PubMed  Google Scholar 

  49. Marquez, R. T., & Xu, L. (2012). Bcl-2: Beclin 1 complex: Multiple, mechanisms regulating autophagy/apoptosis toggle switch. American Journal of Cancer Research, 2, 214–221.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Narendra, D., Kane, L. A., Hauser, D. N., Fearnley, I. M., & Youle, R. J. (2010). p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy, 6, 1090–1106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nogueira, V., Devin, A., Walter, L., Rigoulet, M., Leverve, X., & Fontaine, E. (2005). Effects of decreasing mitochondrial volume on the regulation of the permeability transition pore. Journal of Bioenergetics and Biomembranes, 37, 25–33.

    Article  CAS  PubMed  Google Scholar 

  52. Oliveira, P. J., Bjork, J. A., Santos, M. S., Leino, R. L., Froberg, M. K., Moreno, A. J., et al. (2004). Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mitochondrial toxicity. Toxicology and Applied Pharmacology, 200, 159–168.

    Article  CAS  PubMed  Google Scholar 

  53. Oliveira, P. J., & Wallace, K. B. (2006). Depletion of adenine nucleotide translocator protein in heart mitochondria from doxorubicin-treated rats–relevance for mitochondrial dysfunction. Toxicology, 220, 160–168.

    Article  CAS  PubMed  Google Scholar 

  54. Ong, S. B., Subrayan, S., Lim, S. Y., Yellon, D. M., Davidson, S. M., & Hausenloy, D. J. (2010). Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation, 121, 2012–2022.

    Article  CAS  PubMed  Google Scholar 

  55. Papanicolaou, K. N., Khairallah, R. J., Ngoh, G. A., Chikando, A., Luptak, I., O’Shea, K. M., et al. (2011). Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Molecular and Cellular Biology, 31, 1309–1328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Papanicolaou, K. N., Ngoh, G. A., Dabkowski, E. R., O’Connell, K. A., Ribeiro, R. F., Jr., Stanley, W. C., et al. (2012). Cardiomyocyte deletion of mitofusin-1 leads to mitochondrial fragmentation and improves tolerance to ROS-induced mitochondrial dysfunction and cell death. American Journal of Physiology Heart and Circulatory Physiology, 302, H167–H179.

    Article  CAS  PubMed  Google Scholar 

  57. Papanicolaou, K. N., Phillippo, M. M., & Walsh, K. (2012). Mitofusins and the mitochondrial permeability transition: the potential downside of mitochondrial fusion. American Journal of Physiology Heart and Circulatory Physiology, 303, H243–H255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Parone, P. A., James, D. I., Da Cruz, S., Mattenberger, Y., Donze, O., Barja, F., et al. (2006). Inhibiting the mitochondrial fission machinery does not prevent Bax/Bak-dependent apoptosis. Molecular and Cellular Biology, 26, 7397–7408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Parra, V., Eisner, V., Chiong, M., Criollo, A., Moraga, F., Garcia, A., et al. (2008). Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis. Cardiovascular Research, 77, 387–397.

    Article  CAS  PubMed  Google Scholar 

  60. Pereira, G. C., Pereira, S. P., Pereira, C. V., Lumini, J. A., Magalhaes, J., Ascensao, A., et al. (2012). Mitochondrionopathy phenotype in doxorubicin-treated Wistar rats depends on treatment protocol and is cardiac-specific. PLoS ONE, 7, e38867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pereira, G. C., Silva, A. M., Diogo, C. V., Carvalho, F. S., Monteiro, P., & Oliveira, P. J. (2011). Drug-induced cardiac mitochondrial toxicity and protection: From doxorubicin to carvedilol. Current Pharmaceutical Design, 17, 2113–2129.

    Article  CAS  PubMed  Google Scholar 

  62. Pich, S., Bach, D., Briones, P., Liesa, M., Camps, M., Testar, X., et al. (2005). The Charcot-Marie-Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. Human Molecular Genetics, 14, 1405–1415.

    Article  CAS  PubMed  Google Scholar 

  63. Piquereau, J., Caffin, F., Novotova, M., Lemaire, C., Veksler, V., Garnier, A., et al. (2013). Mitochondrial dynamics in the adult cardiomyocytes: Which roles for a highly specialized cell? Frontiers in Physiology, 4, 102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Piquereau, J., Caffin, F., Novotova, M., Prola, A., Garnier, A., Mateo, P., et al. (2012). Down-regulation of OPA1 alters mouse mitochondrial morphology, PTP function, and cardiac adaptation to pressure overload. Cardiovascular Research, 94, 408–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Santos, D. L., Moreno, A. J., Leino, R. L., Froberg, M. K., & Wallace, K. B. (2002). Carvedilol protects against doxorubicin-induced mitochondrial cardiomyopathy. Toxicology and Applied Pharmacology, 185, 218–227.

    Article  CAS  PubMed  Google Scholar 

  66. Scherz-Shouval, R., & Elazar, Z. (2011). Regulation of autophagy by ROS: Physiology and pathology. Trends in Biochemical Sciences, 36, 30–38.

    Article  CAS  PubMed  Google Scholar 

  67. Sciarretta, S., Hariharan, N., Monden, Y., Zablocki, D., & Sadoshima, J. (2011). Is autophagy in response to ischemia and reperfusion protective or detrimental for the heart? Pediatric Cardiology, 32, 275–281.

    Article  PubMed  Google Scholar 

  68. Sishi, B. J., Loos, B., van Rooyen, J., & Engelbrecht, A. M. (2013). Autophagy upregulation promotes survival and attenuates doxorubicin-induced cardiotoxicity. Biochemical Pharmacology, 85, 124–134.

    Article  CAS  PubMed  Google Scholar 

  69. Smuder, A. J., Kavazis, A. N., Min, K., & Powers, S. K. (2011). Exercise protects against doxorubicin-induced markers of autophagy signaling in skeletal muscle. Journal of Applied Physiology, 111, 1190–1198.

    Article  CAS  PubMed  Google Scholar 

  70. Smuder, A. J., Kavazis, A. N., Min, K., & Powers, S. K. (2013). Doxorubicin-induced markers of myocardial autophagic signaling in sedentary and exercise trained animals. Journal of Applied Physiology, 115, 176–185.

    Article  CAS  PubMed  Google Scholar 

  71. Sun, M., Shen, W., Zhong, M., Wu, P., Chen, H., & Lu, A. (2013). Nandrolone attenuates aortic adaptation to exercise in rats. Cardiovascular Research, 97, 686–695.

    Article  CAS  PubMed  Google Scholar 

  72. Szigeti, A., Hocsak, E., Rapolti, E., Racz, B., Boronkai, A., Pozsgai, E., et al. (2010). Facilitation of mitochondrial outer and inner membrane permeabilization and cell death in oxidative stress by a novel Bcl-2 homology 3 domain protein. Journal of Biological Chemistry, 285, 2140–2151.

    Article  CAS  PubMed  Google Scholar 

  73. Tanaka, A., Cleland, M. M., Xu, S., Narendra, D. P., Suen, D. F., Karbowski, M., et al. (2010). Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. Journal of Cell Biology, 191, 1367–1380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Twig, G., Elorza, A., Molina, A. J., Mohamed, H., Wikstrom, J. D., Walzer, G., et al. (2008). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO Journal, 27, 433–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wallace, K. B. (2003). Doxorubicin-induced cardiac mitochondrionopathy. Pharmacology and Toxicology, 93, 105–115.

    Article  CAS  PubMed  Google Scholar 

  76. Wallace, K. B. (2007). Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis. Cardiovascular Toxicology, 7, 101–107.

    Article  CAS  PubMed  Google Scholar 

  77. Wang, G. W., Klein, J. B., & Kang, Y. J. (2001). Metallothionein inhibits doxorubicin-induced mitochondrial cytochrome c release and caspase-3 activation in cardiomyocytes. Journal of Pharmacology and Experimental Therapeutics, 298, 461–468.

    CAS  PubMed  Google Scholar 

  78. Wang, X. L., Wang, X., Xiong, L. L., Zhu, Y., Chen, H. L., Chen, J. X., et al. (2013). Salidroside improves doxorubicin-induced cardiac dysfunction by suppression of excessive oxidative stress and cardiomyocyte apoptosis. Journal of Cardiovascular Pharmacology, 62, 512–523.

    Article  CAS  PubMed  Google Scholar 

  79. Wasilewski, M., & Scorrano, L. (2009). The changing shape of mitochondrial apoptosis. Trends in Endocrinology and Metabolism, 20, 287–294.

    Article  CAS  PubMed  Google Scholar 

  80. Whelan, R. S., Konstantinidis, K., Wei, A. C., Chen, Y., Reyna, D. E., Jha, S., et al. (2012). Bax regulates primary necrosis through mitochondrial dynamics. Proceedings of the National Academy of Sciences USA, 109, 6566–6571.

    Article  CAS  Google Scholar 

  81. Xu, X., Chen, K., Kobayashi, S., Timm, D., & Liang, Q. (2012). Resveratrol attenuates doxorubicin-induced cardiomyocyte death via inhibition of p70 S6 kinase 1-mediated autophagy. Journal of Pharmacology and Experimental Therapeutics, 341, 183–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Youle, R. J., & Narendra, D. P. (2011). Mechanisms of mitophagy. Nature Reviews Molecular Cell Biology, 12, 9–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang, Y. W., Shi, J., Li, Y. J., & Wei, L. (2009). Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Archivum immunologiae et therapiae experimentalis, 57, 435–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zheng, Q., & Wang, X. (2010). Autophagy and the ubiquitin-proteasome system in cardiac dysfunction. Panminerva Medica, 52, 9–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhou, S., Palmeira, C. M., & Wallace, K. B. (2001). Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicology Letters, 121, 151–157.

    Article  CAS  PubMed  Google Scholar 

  86. Zhou, S., Starkov, A., Froberg, M. K., Leino, R. L., & Wallace, K. B. (2001). Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Research, 61, 771–777.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Portuguese Foundation of Science and Technology (FCT) grants (SFRH/BD/61889/2009 and SFRH/BPD/108322/2015 to IMA, SFRH/BD/112983/2015 to ESA, PTDC/DTP-DES/1071/2012 to AA, P2020-PTDC/DTP-DES/7087/2014 to JM, PTDC/SAU-TOX/117912/2010 to PO, Pest-C/SAU/LA0001/2013-2014 to CNC and UID/DTP/00617/2013 to CIAFEL). The authors acknowledge the collaboration of Dr. Maria Manuel Balça, Dr. Diogo Mariani and Dr. André Ferreira for their technical assistance regarding animals’ care and training protocols and to Dr. Claudia Deus, Dr. Maria José Mendes and Dr. Lucília Penteado for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Marques-Aleixo.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques-Aleixo, I., Santos-Alves, E., Torrella, J.R. et al. Exercise and Doxorubicin Treatment Modulate Cardiac Mitochondrial Quality Control Signaling. Cardiovasc Toxicol 18, 43–55 (2018). https://doi.org/10.1007/s12012-017-9412-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-017-9412-4

Keywords

Navigation