Skip to main content
Log in

Lactational Exposure of Phthalate Impairs Insulin Signaling in the Cardiac Muscle of F1 Female Albino Rats

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Di-2-ethylhexyl phthalate (DEHP), a ubiquitous endocrine disruptor and plasticizer of polyvinyl chloride, is being used in the manufacture of consumer and medical products as well as in children’s toys. Fetuses and newborns are more sensitive to endocrine disruption. DEHP is a lipophilic substance, which could easily be transferred to the developing offspring through placenta or breast milk. DEHP alters the metabolism of the endocrine organs, which leads to energy imbalance associated with increased risk of insulin resistance, obesity and cardiovascular disease. The heart is an insulin-responsive organ. The effect of DEHP on the cardiac muscle insulin signaling remains obscure. Since the developmental period is more vulnerable to the adverse effect of DEHP, the present study was framed to study the impact of lactational exposure of DEHP on insulin signaling molecules in the cardiac muscle of F1 progeny female albino rat (postnatal day 60). Healthy dams were treated with DEHP orally (0, 1, 10 and 100 mg/kg body weight/day, respectively) from the postpartum day 1–21. Both low and high doses are relevant to the human exposure, and hence, both were used in this study. At a low dose (1 mg/kg body weight/day), obvious differences were observed in the fasting blood glucose and the insulin signaling molecule when compared to control. But marked differences were observed in the cardiac tissue insulin signaling molecules of animals treated with high doses. In conclusion, the DEHP treatment significantly increased the fasting blood glucose level and decreased the insulin receptor (IR), insulin receptor substrate (IRS-1), p-IRS-1Tyr632, p-AktSer473, plasma membrane glucose transporter (GLUT4), 14C-2-deoxyglucose uptake and the 14C-glucose oxidation. Conversely, Akt and GLUT4 protein in cytosol remained unaltered compared to control. Lactational exposure of DEHP impairs insulin signal transduction and glucose oxidation in the cardiac muscle of the F1 female albino rats, suggesting its possible role in the development of type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

Atf-4:

Activating transcription factor 4

Atf-6:

Activating transcription factor 6

Bip:

Binding immunoglobulin protein

CPM:

Counts per minute

FSH:

Follicle-stimulating hormone

GLUT4:

Glucose transporter 4

IR:

Insulin receptor

IRS-1:

Insulin receptor substrate 1

IU:

International units

JNK:

C-Jun N-terminal kinase

MEHP:

Mono-(-2-ethylhexyl phthalate)

MEHHP:

Mono-(2-ethyl-5-hydroxyhexyl) phthalate

MEOHP:

Mono-(2-ethyl-5-oxohexyl) phthalate

mM:

Millimolar

nM:

Nanomolar

OECD:

Organization for economic cooperation and development

Pdx1:

Pancreatic duodenal homeobox-1

PPARγ:

Peroxisome proliferator-activated receptor γ

PPARα:

Peroxisome proliferator-activated receptor α

Ucp2:

Uncoupling protein-2

μCi:

Microcurie

References

  1. Eckardt, K., Taube, A., & Eckel, J. (2011). Obesity-associated insulin resistance in skeletal muscle: Role of lipid accumulation and physical inactivity. Reviews in Endocrine and Metabolic Disorders, 12, 163–172.

    Article  CAS  PubMed  Google Scholar 

  2. Hectors, T. L., Vanparys, C., van der Ven, K., Martens, G. A., Jorens, P. G., Van Gaal, L. F., et al. (2011). Environmental pollutants and type 2 diabetes: A review of mechanisms that can disrupt beta cell function. Diabetologia, 54, 1273–1290.

    Article  CAS  PubMed  Google Scholar 

  3. Kobayashi, K., Miyagawa, M., Wang, R. S., Suda, M., Sekiguchi, S., & Honma, T. (2006). Effects of in utero and lactational exposure to di(2-ethylhexyl)phthalate on somatic and physical development in rat offspring. Industrial Health, 44, 652–660.

    Article  CAS  PubMed  Google Scholar 

  4. Fay, M., Donohue, J. M., & De Rosa, C. (1999). ATSDR evaluation of health effects of chemicals. VI. Di(2-ethylhexyl)phthalate. Agency for toxic substances and disease registry. Toxicology and Industrial Health, 15, 651–746.

    CAS  PubMed  Google Scholar 

  5. FDA. (2002). Safety assessment of Di(2-ethylhexyl)phthalate (DEHP) released from PVC medical devices, (Administration, F.a.D., ed).

  6. ATSDR. (2002). Toxicological Profile for Di(2-ethylhexyl)phthalate (DEHP). Atlanta, GA: Agency for toxic substances and disease registry. Available: http://www.atsdr.cdc.gov/toxprofiles/tp9.html (Accessed 11 August 2003).

  7. NTP-CERHR. (2006). NTP-CERHR monograph on the potential human reproductive and developmental effects of Di(2-Ethylhexyl) Phthalate (DEHP), U.S. Department of Health and Human Services.

  8. Desvergne, B., Feige, J. N., & Casals-Casas, C. (2009). PPAR-mediated activity of phthalates: A link to the obesity epidemic? Molecular and Cellular Endocrinology, 304, 43–48.

    Article  CAS  PubMed  Google Scholar 

  9. Martinelli, M. I., Mocchiutti, N. O., & Bernal, C. A. (2006). Dietary di(2-ethylhexyl)phthalate-impaired glucose metabolism in experimental animals. Human and Experimental Toxicology, 25, 531–538.

    Article  CAS  PubMed  Google Scholar 

  10. Stahlhut, R. W., van Wijngaarden, E., Dye, T. D., Cook, S., & Swan, S. H. (2007). Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult U.S. males. Environmental Health Perspectives, 115, 876–882.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Hatch, E. E., Nelson, J. W., Qureshi, M. M., Weinberg, J., Moore, L. L., Singer, M., et al. (2008). Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: A cross-sectional study of NHANES data, 1999–2002. Environmental Health: A Global Access Science Source, 7, 27.

    Article  Google Scholar 

  12. Rengarajan, S., Parthasarathy, C., Anitha, M., & Balasubramanian, K. (2007). Diethylhexyl phthalate impairs insulin binding and glucose oxidation in Chang liver cells. Toxicology In Vitro: An International Journal Published in Association With BIBRA, 21, 99–102.

    Article  CAS  Google Scholar 

  13. Srinivasan, C., Khan, A. I., Balaji, V., Selvaraj, J., & Balasubramanian, K. (2011). Diethyl hexyl phthalate-induced changes in insulin signaling molecules and the protective role of antioxidant vitamins in gastrocnemius muscle of adult male rat. Toxicology and Applied Pharmacology, 257, 155–164.

    Article  CAS  PubMed  Google Scholar 

  14. Rajesh, P., Sathish, S., Srinivasan, C., Selvaraj, J., & Balasubramanian, K. (2013). Phthalate is associated with insulin resistance in adipose tissue of male rat: Role of antioxidant vitamins. Journal of Cellular Biochemistry, 114, 558–569.

    Article  CAS  PubMed  Google Scholar 

  15. Calafat, A. M., Slakman, A. R., Silva, M. J., Herbert, A. R., & Needham, L. L. (2004). Automated solid phase extraction and quantitative analysis of human milk for 13 phthalate metabolites. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 805, 49–56.

    Article  CAS  PubMed  Google Scholar 

  16. Latini, G., De Felice, C., Presta, G., Del Vecchio, A., Paris, I., Ruggieri, F., et al. (2003). In utero exposure to di-(2-ethylhexyl)phthalate and duration of human pregnancy. Environmental Health Perspectives, 111, 1783–1785.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Latini, G. (2000). Potential hazards of exposure to di-(2-ethylhexyl)-phthalate in babies. A Review. Biology of the Neonate, 78, 269–276.

    Article  CAS  Google Scholar 

  18. WHO. (2002). Global assessment of the state-of-the-science of endocrine disruptors.

  19. Lin, Y., Wei, J., Li, Y., Chen, J., Zhou, Z., Song, L., et al. (2011). Developmental exposure to di(2-ethylhexyl) phthalate impairs endocrine pancreas and leads to long-term adverse effects on glucose homeostasis in the rat. American Journal of Physiology. Endocrinology and Metabolism, 301, E527–E538.

    Article  CAS  PubMed  Google Scholar 

  20. Gillum, N., Karabekian, Z., Swift, L. M., Brown, R. P., Kay, M. W., & Sarvazyan, N. (2009). Clinically relevant concentrations of di (2-ethylhexyl) phthalate (DEHP) uncouple cardiac syncytium. Toxicology and Applied Pharmacology, 236, 25–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Posnack, N. G., Lee, N. H., Brown, R., & Sarvazyan, N. (2011). Gene expression profiling of DEHP-treated cardiomyocytes reveals potential causes of phthalate arrhythmogenicity. Toxicology, 279, 54–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Johnson, A. D., & Turner, P. C. (1971). Epididymal carbohydrate metabolism. I. Glucose-1-14-C and glucose-6-14-C metabolism by mouse, rat and rabbit tissues. Comparative Biochemistry and Physiology A, Comparative Physiology, 39, 599–604.

    Article  CAS  PubMed  Google Scholar 

  23. Kraft, L. A., & Johnson, A. D. (1972). Epididymal carbohydrate metabolism. II. Substrates and pathway utilization of caput and cauda epididymal tissue from the rabbit, rat and mouse. Comparative Biochemistry and Physiology B, Comparative Biochemistry, 42, 451–461.

    Article  CAS  PubMed  Google Scholar 

  24. Ishizuka, T., Kajita, K., Miura, A., Ishizawa, M., Kanoh, Y., Itaya, S., et al. (1999). DHEA improves glucose uptake via activations of protein kinase C and phosphatidylinositol 3-kinase. The American Journal of Physiology, 276, E196–E204.

    CAS  PubMed  Google Scholar 

  25. Dombrowski, L., Roy, D., Marcotte, B., & Marette, A. (1996). A new procedure for the isolation of plasma membranes, T tubules, and internal membranes from skeletal muscle. The American journal of physiology, 270, E667–E676.

    CAS  PubMed  Google Scholar 

  26. Kristiansen, S., Nielsen, J. N., Bourgoin, S., Klip, A., Franco, M., & Richter, E. A. (2001). GLUT-4 translocation in skeletal muscle studied with a cell-free assay: Involvement of phospholipase D. American Journal of Physiology. Endocrinology and Metabolism, 281, E608–E618.

    CAS  PubMed  Google Scholar 

  27. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.

    CAS  PubMed  Google Scholar 

  28. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  29. Latini, G., De Felice, C., & Verrotti, A. (2004). Plasticizers, infant nutrition and reproductive health. Reproductive Toxicology, 19, 27–33.

    Article  CAS  PubMed  Google Scholar 

  30. Hauser, R., & Calafat, A. M. (2005). Phthalates and human health. Occupational and Environmental Medicine, 62, 806–818.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Faouzi, M. A., Dine, T., Gressier, B., Kambia, K., Luyckx, M., Pagniez, D., et al. (1999). Exposure of hemodialysis patients to di-2-ethylhexyl phthalate. International Journal of Pharmaceutics, 180, 113–121.

    Article  CAS  PubMed  Google Scholar 

  32. Shneider, B., Schena, J., Truog, R., Jacobson, M., & Kevy, S. (1989). Exposure to di(2-ethylhexyl)phthalate in infants receiving extracorporeal membrane oxygenation. The New England Journal of Medicine, 320, 1563.

    CAS  PubMed  Google Scholar 

  33. Davis, B. J., Maronpot, R. R., & Heindel, J. J. (1994). Di-(2-ethylhexyl) phthalate suppresses estradiol and ovulation in cycling rats. Toxicology and Applied Pharmacology, 128, 216–223.

    Article  CAS  PubMed  Google Scholar 

  34. Treinen, K. A., Dodson, W. C., & Heindel, J. J. (1990). Inhibition of FSH-stimulated cAMP accumulation and progesterone production by mono(2-ethylhexyl) phthalate in rat granulosa cell cultures. Toxicology and Applied Pharmacology, 106, 334–340.

    Article  CAS  PubMed  Google Scholar 

  35. Young, L. H. (2010). Diet-induced obesity obstructs insulin signaling in the heart. American Journal of Physiology. Heart and Circulatory Physiology, 298, H306–H307.

    Article  CAS  PubMed  Google Scholar 

  36. Belke, D. D., Betuing, S., Tuttle, M. J., Graveleau, C., Young, M. E., Pham, M., et al. (2002). Insulin signaling coordinately regulates cardiac size, metabolism, and contractile protein isoform expression. The Journal of Clinical Investigation, 109, 629–639.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Muniyappa, R., Montagnani, M., Koh, K. K., & Quon, M. J. (2007). Cardiovascular actions of insulin. Endocrine Reviews, 28, 463–491.

    Article  CAS  PubMed  Google Scholar 

  38. Gayathri, N. S., Dhanya, C. R., Indu, A. R., & Kurup, P. A. (2004). Changes in some hormones by low doses of di (2-ethyl hexyl) phthalate (DEHP), a commonly used plasticizer in PVC blood storage bags & medical tubing. The Indian Journal of Medical Research, 119, 139–144.

    CAS  PubMed  Google Scholar 

  39. Livingstone, C., & Collison, M. (2002). Sex steroids and insulin resistance. Clinical Science, 102, 151–166.

    Article  CAS  PubMed  Google Scholar 

  40. Svensson, K., Hernandez-Ramirez, R. U., Burguete-Garcia, A., Cebrian, M. E., Calafat, A. M., Needham, L. L., et al. (2011). Phthalate exposure associated with self-reported diabetes among Mexican women. Environmental Research, 111, 792–796.

    Article  CAS  PubMed  Google Scholar 

  41. Ferre, P. (2004). The biology of peroxisome proliferator-activated receptors: Relationship with lipid metabolism and insulin sensitivity. Diabetes, 53(Suppl 1), S43–S50.

    Article  CAS  PubMed  Google Scholar 

  42. Brun, R. P., Kim, J. B., Hu, E., & Spiegelman, B. M. (1997). Peroxisome proliferator-activated receptor gamma and the control of adipogenesis. Current Opinion in Lipidology, 8, 212–218.

    Article  CAS  PubMed  Google Scholar 

  43. Tontonoz, P., Nagy, L., Alvarez, J. G., Thomazy, V. A., & Evans, R. M. (1998). PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell, 93, 241–252.

    Article  CAS  PubMed  Google Scholar 

  44. Batista, T. M., Alonso-Magdalena, P., Vieira, E., Amaral, M. E., Cederroth, C. R., Nef, S., et al. (2012). Short-term treatment with bisphenol-A leads to metabolic abnormalities in adult male mice. PLoS One, 7, e33814.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Desrois, M., Sidell, R. J., Gauguier, D., King, L. M., Radda, G. K., & Clarke, K. (2004). Initial steps of insulin signaling and glucose transport are defective in the type 2 diabetic rat heart. Cardiovascular Research, 61, 288–296.

    Article  CAS  PubMed  Google Scholar 

  46. Pessin, J. E., & Saltiel, A. R. (2000). Signaling pathways in insulin action: Molecular targets of insulin resistance. The Journal of Clinical Investigation, 106, 165–169.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Santhosh, A., Nair, K. G., Arun, P., Deepadevi, K. V., Manojkumar, V., Lakshmi, L. R., et al. (1998). Effect of DEHP [di-(2-ethyl hexyl) phthalate] on lipid peroxidation in liver in rats and in primary cultures of rat hepatocytes. The Indian Journal of Medical Research, 108, 17–23.

    CAS  PubMed  Google Scholar 

  48. Garcia-Arencibia, M., Davila, N., Campion, J., Carmen Carranza, M., & Calle, C. (2005). Identification of two functional estrogen response elements complexed with AP-1-like sites in the human insulin receptor gene promoter. The Journal of Steroid Biochemistry and Molecular Biology, 94, 1–14.

    Article  CAS  PubMed  Google Scholar 

  49. Xie, P., Liu, M. L., Gu, Y. P., Lu, J., Xu, X., Zeng, W. M., et al. (2003). Oestrogen improves glucose metabolism and insulin signal transduction in HepG2 cells. Clinical and Experimental Pharmacology and Physiology, 30, 643–648.

    Article  CAS  PubMed  Google Scholar 

  50. Khan, A. H., & Pessin, J. E. (2002). Insulin regulation of glucose uptake: a complex interplay of intracellular signalling pathways. Diabetologia, 45, 1475–1483.

    Article  CAS  PubMed  Google Scholar 

  51. Kaneto, H., Katakami, N., Matsuhisa, M., & Matsuoka, T. A. (2010). Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators of Inflammation, 2010, 453892.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Potashnik, R., Bloch-Damti, A., Bashan, N., & Rudich, A. (2003). IRS1 degradation and increased serine phosphorylation cannot predict the degree of metabolic insulin resistance induced by oxidative stress. Diabetologia, 46, 639–648.

    CAS  PubMed  Google Scholar 

  53. Pirola, L., Johnston, A. M., & Van Obberghen, E. (2004). Modulation of insulin action. Diabetologia, 47, 170–184.

    Article  CAS  PubMed  Google Scholar 

  54. Rusyn, I., Kadiiska, M. B., Dikalova, A., Kono, H., Yin, M., Tsuchiya, K., et al. (2001). Phthalates rapidly increase production of reactive oxygen species in vivo: Role of Kupffer cells. Molecular Pharmacology, 59, 744–750.

    CAS  PubMed  Google Scholar 

  55. Peraldi, P., Xu, M., & Spiegelman, B. M. (1997). Thiazolidinediones block tumor necrosis factor-alpha-induced inhibition of insulin signaling. The Journal of Clinical Investigation, 100, 1863–1869.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Teruel, T., Hernandez, R., & Lorenzo, M. (2001). Ceramide mediates insulin resistance by tumor necrosis factor-alpha in brown adipocytes by maintaining Akt in an inactive dephosphorylated state. Diabetes, 50, 2563–2571.

    Article  CAS  PubMed  Google Scholar 

  57. Slot, J. W., Geuze, H. J., Gigengack, S., James, D. E., & Lienhard, G. E. (1991). Translocation of the glucose transporter GLUT4 in cardiac myocytes of the rat. Proceedings of the National Academy of Sciences of the United States of America, 88, 7815–7819.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Uphues, I., Kolter, T., Goud, B., & Eckel, J. (1995). Failure of insulin-regulated recruitment of the glucose transporter GLUT4 in cardiac muscle of obese Zucker rats is associated with alterations of small-molecular-mass GTP-binding proteins. The Biochemical Journal, 311(Pt 1), 161–166.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Russell, R. R, 3rd, Bergeron, R., Shulman, G. I., & Young, L. H. (1999). Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. The American Journal of Physiology, 277, H643–H649.

    CAS  PubMed  Google Scholar 

  60. Finck, B. N., Bernal-Mizrachi, C., Han, D. H., Coleman, T., Sambandam, N., LaRiviere, L. L., et al. (2005). A potential link between muscle peroxisome proliferator- activated receptor-alpha signaling and obesity-related diabetes. Cell Metabolism, 1, 133–144.

    Article  CAS  PubMed  Google Scholar 

  61. Lizunov, V. A., Matsumoto, H., Zimmerberg, J., Cushman, S. W., & Frolov, V. A. (2005). Insulin stimulates the halting, tethering, and fusion of mobile GLUT4 vesicles in rat adipose cells. The Journal of Cell Biology, 169, 481–489.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Lapinskas, P. J., Brown, S., Leesnitzer, L. M., Blanchard, S., Swanson, C., Cattley, R. C., et al. (2005). Role of PPARalpha in mediating the effects of phthalates and metabolites in the liver. Toxicology, 207, 149–163.

    Article  CAS  PubMed  Google Scholar 

  63. Park, S. Y., Cho, Y. R., Kim, H. J., Higashimori, T., Danton, C., Lee, M. K., et al. (2005). Unraveling the temporal pattern of diet-induced insulin resistance in individual organs and cardiac dysfunction in C57BL/6 mice. Diabetes, 54, 3530–3540.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial assistance from UGC-SAP-DRS, UGC-ASIST and DST-FIST programs are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karundevi Balasubramanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangala Priya, V., Mayilvanan, C., Akilavalli, N. et al. Lactational Exposure of Phthalate Impairs Insulin Signaling in the Cardiac Muscle of F1 Female Albino Rats. Cardiovasc Toxicol 14, 10–20 (2014). https://doi.org/10.1007/s12012-013-9233-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-013-9233-z

Keywords

Navigation