Skip to main content

Advertisement

Log in

Boron Compound–Based Treatments Against Multidrug-Resistant Bacterial Infections in Lung Cancer In Vitro Model

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Multidrug-resistant bacteria is one of the most important public health problems. Increasing rates of antibacterial resistance also affect the outcomes of medical approaches. Cancer treatment because of immune system deficiency (chemotherapy or steroids usage) commonly can cause infection. Lung cancer is the dominant cause of cancer-related deaths, and infection is the most common cause of death among those patients. In this study, it was aimed to determine the antimicrobial, antibiofilm, and anticancer activity of boron compounds. A549 lung cancer cell line was infected with Acinetobacter baumannii (ATCC 19606), Klebsiella pneumoniae (ATCC 700603), and Pseudomonas aeruginosa (ATCC 27853). In order to determine the fractional inhibitory concentration (FIC) index, antibiotics and boron compound concentrations prepared according to the minimum inhibitory concentration (MIC) values were determined by the checkerboard method. In our study results, the antibiofilm activity was an average of 46% in A. baumannii+boron compounds, 45% in P. aeruginosa+boron compounds, and 43% in K. pneumoniae. Cell culture analysis results show a decrease in viability and antioxidant capacity and an increase in total oxidant status after adding boron compounds to the culture. Immunofluorescence results show a correlation with MTT, and boron compounds increased 8-OHdG expression in comparison to antibiotic administration. In conclusion, boron compounds have promising effects on bacteria, especially in resistant bacteria spp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Vazquez-Lopez R, Rivero Rojas O, Ibarra Moreno A et al (2019) Antibiotic-resistant septicemia in pediatric oncology patients associated with post-therapeutic neutropenic fever. Antibiotics (Basel) 8:106

    Article  PubMed  Google Scholar 

  2. Moghnieh R, Estaitieh N, Mugharbil A et al (2015) Third-generation cephalosporin-resistant Enterobacteriaceae and multidrug-resistant gram-negative bacteria causing bacteremia in febrile neutropenia adult cancer patients in Lebanon, broad-spectrum antibiotics use as a major risk factor, and correlation with poor prognosis. Front Cell Infect Microbiol 5:11

    Article  PubMed  PubMed Central  Google Scholar 

  3. Trecarichi EM, Tumbarello M (2014) Antimicrobial-resistant gram-negative bacteria in febrile neutropenic patients with cancer: current epidemiology and clinical impact. Curr Opin Infect Dis 27:200–210

    Article  CAS  PubMed  Google Scholar 

  4. Dursun A, Özsoylu S, Kılıç H, Ulu Kılıç A, Akyıldız BN (2018) Antibiotic susceptibilities of Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii strains isolated from patients in the pediatric intensive care unit. Turk J Intensive Care 16(3):109–114

    Article  Google Scholar 

  5. Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA (2011) Carbapenems: past, present, and future. Antimicrob Agents Chemother 55:4943–4960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. El-Gamal MI, Brahim I, Hisham N, Aladdin R, Mohammed H, Bahaaeldin A (2017) Recent updates of carbapenem antibiotics. Eur J Med Chem 131:185–195

    Article  CAS  PubMed  Google Scholar 

  7. Frakking FNJ, Rottier WC, Dorigo-Zetsma W, van Hattem JMA, van Hees BC, Klutymans JAWJN et al (2013) Appropriateness of empirical treatment and outcome in bacteremia caused by extended-spectrum-b-Lactamase-producing bacteria. Antimicrob Agents Chemother 57:3092–3099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Codjoe FS, Donkor ES (2018) Carbapenem resistance: a review. Med Sci 6:e1

    Google Scholar 

  9. Poole K (2011) Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2:e65

    Article  Google Scholar 

  10. Hill KE, Malic S, McKee R, Rennison T, Harding KG, Williams DW et al (2010) An in vitro model of chronic wound biofilms to test wound dressings and assess antimicrobial susceptibilities. J Antimicrob Chemother 65(6):1195–1206

    Article  CAS  PubMed  Google Scholar 

  11. Yarwood JM, Schlievert PM (2003) Quorum sensing in Staphylococcus infections. J Clin Invest 112(11):1620–1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tran PL, Lowry N, Campbell T, Reid TW, Webster DR, Tobin E et al (2012) An organoselenium compound inhibits Staphylococcus aureus biofilms on hemodialysis catheters in vivo. Antimicrob Agents Chemother 56(2):972–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Scorei R (2012) Is boron a prebiotic element? A mini-review of the essentiality of boron for the appearance of life on earth. Orig Life Evol Biosph 42:3–17

    Article  CAS  PubMed  Google Scholar 

  14. Ali F, Hosmane NS, Zhu Y (2020) Boron chemistry for medical applications. Molecules 25:828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tombuloglu A, Copoglu H, Aydin-Son Y, Guray NT (2020) In vitro effects of boric acid on human liver hepatoma cell line (HepG2) at the half-maximal inhibitory concentration. J Trace Elem Med Biol 62:126573

    Article  CAS  PubMed  Google Scholar 

  16. Wei Y, Yuan FJ, Zhou WB, Wu L, Chen L, Wang JJ, Zhang YS (2016) Borax-induced apoptosis in HepG2 cells involves p53, Bcl-2, and Bax. Genet Mol Res 15(2). https://doi.org/10.4238/gmr.15028300

  17. Köse DA (2008) Preparation and structure investigation of biopotent boron compounds with hydroxy-functionalized organic molecules. Hacettepe University, Science Institute, Ankara

    Google Scholar 

  18. Celebi D, Taghizadehghalehjoughi A, Baser S, Genc S, Yilmaz A, Yeni Y, Tsatsakis A (2022) Effects of boric acid and potassium metaborate on cytokine levels and redox stress parameters in a wound model infected with methicillin-resistant Staphylococcus aureus. Mol Med Rep 26(3):1-11

  19. Celebi O, Celebi D, Taghizadehghalehjoughi A, Baser S, Güler MC, Yıldırım S (2023). The antibacterial effect of boron compounds and evaluation of the effects on biofilm formation in the infection model of Klebsiella pneumoniae on the HepG2 cell line. J Contemp Med 13(1): 1-7

  20. Celebi D, Aydın E, Rakici E et al (2023) Evaluation of presence of clone ST131 and biofilm formation in ESBL producing and non-producing Escherichia coli strains. Mol Biol Rep 50:5949–5956. https://doi.org/10.1007/s11033-023-08532-z

    Article  CAS  PubMed  Google Scholar 

  21. Ruzin A, Petersen PJ, Jones CH (2010) Resistance development profiling of piperacillin in combination with the novel beta-lactamase inhibitor BLI-489. J Antimicrob Chemother 65(2):252–257

    Article  CAS  PubMed  Google Scholar 

  22. Haste NM, Hughes CC, Tran DN, Fenical W, Jensen PR, Nizet V (2011) Pharmacological properties of the marine natural product marinopyrrole A against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 55(7):3305–3312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ausubel FM, Brient R, Kingston RE, Moore DD, Seidman JG, Smith JA et al (1995) Short protocols in molecular biology, 2nd edn. John Willey & Sons, New York

    Google Scholar 

  24. Poirel L, Walsh TR, Cuvillier V, Nordmann P (2011) Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 70:119–123

    Article  CAS  PubMed  Google Scholar 

  25. Peleg AY, Hooper DC (2010) Hospital-acquired infections due to gram-negative bacteria. N Engl J Med 362(19):1804–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cha JO, Yoo JI, Yoo JS, Chung HS, Park SH, Kim HS et al (2013) Investigation of biofilm formation and its association with the molecular and clinical characteristics of methicillin-resistant Staphylococcus aureus. Osong Public Health Res Perspect 4(5):225–232

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li S, Wu C, Zhao X, Jiang H, Yan H, Wang X (2013) Synergistic antibacterial activity of new isomeric carborane derivatives through combination with nanoscaled titania. J Biomed Nanotechnol 9(3):393–402

    Article  CAS  PubMed  Google Scholar 

  28. Koldemir-Gündüz M, Aydin HE, Berikten D, Kaymak G, Köse DA, Arslantaş A (2021) Synthesis of new boron derived compounds; anticancer, antioxidant and antimicrobial effect in vitro glioblastoma tumor model. J Korean Neurosurg Soc. Nov 64(6):864–872

    Google Scholar 

  29. Koldemir-Gündüz M, Bolat M, Kaymak G, Berikten D, Köse DA (2022) Therapeutic effects of newly synthesized boron compounds (BGM and BGD) on hepatocellular carcinoma. Biol Trace Elem Res 200(1):134–146

    Article  Google Scholar 

  30. Ni N, Li M, Wang J, Wang B (2009) Inhibitors and antagonists of bacterial quorum sensing. Med Res Rev 29(1):65–124

    Article  CAS  PubMed  Google Scholar 

  31. Zan R, Hubbezoglu I, Sumer Z, Tunc T, Tanalp J (2013) Antibacterial effects of two different types of laser and aqueous ozone against Enterococcus faecalis in root canals. Photomed Laser Surg 31(4):150–154

    Article  CAS  PubMed  Google Scholar 

  32. Pointer BR, Boyer MP, Schmidt M (2015) Boric acid destabilizes the hyphal cytoskeleton and inhibits invasive growth of Candida albicans. Yeast 32(4):389–398

    Article  CAS  PubMed  Google Scholar 

  33. Ahmad S, Haque MM, Ashraf SM, Ahmad S (2004) Urethane modified boron filled polyesteramide: a novel anti-microbial polymer from a sustainable resource. Eur Polym J 40:2097–2104

    Article  CAS  Google Scholar 

  34. Yılmaz MT (2012) Minimum inhibitory and minimum bactericidal concentrations of boron compounds against several bacterial strains. Turk J Med Sci 42(2):1423–1429

    Google Scholar 

  35. Sarac N, Ugur A, Boran R, Elgin ES (2015) The use of boron compounds for stabilization of lipase from Pseudomonas aeruginosa ES3 for the detergent industry. J Surfactant Deterg 18(2):275–285

    Article  CAS  Google Scholar 

  36. Sayin Z, Ucan US, Sakmanoglu A (2016) Antibacterial and antibiofilm effects of boron on different bacteria. Biol Trace Elem Res 173:241–246

    Article  CAS  PubMed  Google Scholar 

  37. Mendes RE, Alley MR, Sader HS, Biedenbach DJ, Jones RN (2013) Potency and spectrum of activity of AN3365, a novel boron-containing protein synthesis inhibitor, tested against clinical isolates of Enterobacteriaceae and non fermentative gram-negative bacilli. Antimicrob Agents Chemother 57(6):2849–2857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hu L, Yang X, Yin J, Rong X, Huang X, Yu P, He Z, Liu Y (2021) Combination of AgNPs and domiphen is antimicrobial against biofilms of common pathogens. Int J Nanomedicine 16:7181–7194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Celebi O, Celebi D, Baser S, Aydın E, Rakıcı E, Uğraş S, Ağyar Yoldaş P, Baygutalp NK, & El-Aty AMA (2023) Antibacterial activity of boron compounds against biofilm-forming pathogens. Biol Trace Elem Res. https://doi.org/10.1007/s12011-023-03768-z

  40. Hernandez V, Crépin T, Palencia A, Cusack S, Akama T, Baker SJ, Plattner JJ (2013) Discovery of a novel class of boron-based antibacterials with activity against gram-negative bacteria. Antimicrob Agents Chemother 57(3):1394–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bhowmick T, Weinstein MP (2020) Microbiology of meropenem-vaborbactam: a novel carbapenem beta-lactamase inhibitor combination for carbapenem-resistant Enterobacterales infections. Infect Dis Ther 9:757–767

    Article  PubMed  PubMed Central  Google Scholar 

  42. Celebi O, Taghizadehghalehjoughi A, Celebi D, Mesnage R, Golokhvast KS, Arsene AL, Tsatsakis A (2023) Effect of the combination of Lactobacillus acidophilus (probiotic) with vitamin K3 and vitamin E on Escherichia coli and Staphylococcus aureus: an in vitro pathogen model. Mol Med Rep 27(6):1–12

    Article  Google Scholar 

  43. Celebi D, Celebi O, Baser S, Taghizadehghalehjoughi A (2023) Evaluation of Antimicrobial and Antibiofilm Efficacy of Bee Venom and Exosome Against Escherichia coli K99 Strain. Kafkas Univ. Vet. Fak. Derg 29(3):239–246. https://doi.org/10.9775/kvfd.2023.29132

    Article  Google Scholar 

Download references

Code Availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Concept—D.C., O.C., A.T., E.A., M.C.G., S.B., and S.Y. Design—D.C., O.C., E.A., A.T., S.B., and S.Y. Supervision—D.C., O.C., A.T., and S.Y. Resources—D.C., O.C., A.T., S.B., and S.Y. Materials—D.C., O.C., A.T., S.B., and S.Y. Data collection and/or processing—D.C., O.C., A.T., S.B., and S.Y. Analysis and/or Interpretation—D.C., O.C., A.T., S.B., and S.Y. Literature search—D.C., O.C., A.T., M.C.G., S.B., and S.Y. Writing—D.Ç., E.A., and S.Y. Critical reviews—D.C., O.C., A.T., M.C.G., and S.Y.

Corresponding author

Correspondence to Demet Celebı.

Ethics declarations

Ethics Approval

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celebı, D., Celebı, O., Aydin, E. et al. Boron Compound–Based Treatments Against Multidrug-Resistant Bacterial Infections in Lung Cancer In Vitro Model. Biol Trace Elem Res 202, 145–160 (2024). https://doi.org/10.1007/s12011-023-03912-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03912-9

Keywords

Navigation