Skip to main content
Log in

Horse Whole Blood Trace Elements from Different Sicily Areas: Biomonitoring of Environmental Risk

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Horses are excellent bioindicators for the assessment of environmental pollution. The aim of this study was to evaluate the levels and potential bioaccumulation of 28 mineral elements in 75 horse whole blood samples collected from five pollution-prone areas of Sicily, Italy. A direct mercury analyzer (DMA-80) was used for Hg determination, and an inductively coupled plasma mass spectrometer (ICP-MS) for all other elements. A one-way ANOVA test, followed by Bonferroni’s multiple comparison for post hoc comparison, was applied to assess statistically significant differences between mineral elements and the five experimental groups. The levels of mineral elements in hay and concentrate were below the limits set by Regulation No. 744/2012. The mineral content of whole blood samples was slightly influenced by the region of origin of the horse. p values < 0.05 were statistically meaningful. However, the concentrations of mineral elements in horses’ whole blood remained within reference ranges. In conclusion, the present study shows that the mineral content does not represent a toxicological risk for the analyzed horses. In addition, the study areas did not appear to show a high mineral element contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data generated are presented in this manuscript.

References

  1. Licata P, Trombetta D, Cristani M, Naccari C, Martino D, Caló M, Naccari F (2005) Heavy metals in liver and muscle of bluefin tuna (Thunnus thynnus) caught in the straits of Messina (Sicily, Italy). Environ Monit Assess 107(1):239–248. https://doi.org/10.1007/s10661-005-2382-1

    Article  CAS  PubMed  Google Scholar 

  2. Al-Fartusie FS, Mohssan SN (2017) Essential trace elements and their vital roles in human body. Indian J Adv Chem Sci 5:127–136

    CAS  Google Scholar 

  3. Stankovic S, Stankovic R (2013) Bioindicators of toxic metals. green materials for energy, products and depollution. https://doi.org/10.1007/978-94-007-6836-9_5

  4. Di Bella G, Pizzullo G, Bua GD, Potortì AG, Santini A, Giacobbe S (2018) Mapping toxic mineral contamination: the southern oyster drill, S. haemastoma (L., 1767), as evaluable sentinel species. Environ Monit Assess 190(1). https://doi.org/10.1007/s10661-017-6380-x

  5. Maia L, De Souza MV, Fernandes RBA, Fontes MPF, de Souza Vianna MW, Luz WV (2006) Heavy metals in horse blood, serum, and feed in Minas Gerais, Brazil. J Equine Vet Sci 26(12):578–583. https://doi.org/10.1016/j.jevs.2006.11.007

    Article  Google Scholar 

  6. Perillo L, Arfuso F, Piccione G, Dara S, Tropia E, Cascone G, Licitra F, Monteverde V (2021) Quantification of some heavy metals in hair of dairy cows housed in different areas from Sicily as a bioindicator of environmental exposure - a preliminary study. Animals 11:2268. https://doi.org/10.3390/ani11082268

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72. https://doi.org/10.2478/intox-2014-0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Briffa J, Sinagra E, Blundell R (2020) Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6(9):e04691. https://doi.org/10.1016/j.heliyon.2020.e04691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Altinok-Yipel F, Yipel M, Altug N (2022) Element concentrations in horse blood and relation between age, gender, breed, hematological and biochemical parameters. J Appl Biol Sci 16(3):434–446. https://doi.org/10.5281/zenodo.7114040

    Article  Google Scholar 

  10. Choiniere J, Wang L (2016) Exposure to inorganic arsenic can lead to gut microbe perturbations and hepatocellular carcinoma. Acta Pharm Sin B 6(5):426–429

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kienzle E, Möllmann F, Nater S, Wanner M, Wichert B (2008) Mineral content of hay harvested in Bavarian and Swiss horse farms. Predictive value of cutting time, number of cut, botanical composition, origin and fertilization. J Anim Physiol Anim Nutr 92(6):712–717. https://doi.org/10.1111/j.1439-0396.2007.00769.x

    Article  CAS  Google Scholar 

  12. Interdonato M, Bitto A, Pizzino G, Irrera N, Pallio G, Mecchio A, Cuspilici A, Minutoli L, Altavilla D, Squadrito F (2014) Levels of heavy metals in adolescents living in the industrialised area of Milazzo-Valle del Mela (northern Sicily). J Environ Public Health:326845. https://doi.org/10.1155/2014/326845

  13. Casteel SW (2001) Metal toxicosis in horses. Vet Clin North Am Equine Pract 17(3):517–527. https://doi.org/10.1016/s0749-0739(17)30049-4

    Article  CAS  PubMed  Google Scholar 

  14. Asano R, Suzuki K, Otsuka T, Otsuka M, Sakurai H (2002) Concentrations of toxic metals and essential minerals in the mane hair of healthy racing horses and their relation to age. J Vet Med Sci 64(7):607–610. https://doi.org/10.1292/jvms.64.607

    Article  CAS  PubMed  Google Scholar 

  15. Giannetto C, Fazio F, Nava V, Arfuso F, Piccione G, Coelho C, Gugliandolo E, Licata P (2021) Data on multiple regression analysis between boron, nickel, arsenic, antimony, and biological substates in horses: the role of heamtological biomarkers. J Biochem Mol Toxicol:e22955. https://doi.org/10.1002/jbt.22955

  16. Kabu M, Akosman MS (2013) Biological effects of boron. Rev Envir Contamin Toxicol:57–75. https://doi.org/10.1007/978-1-4614-6470-9_2

  17. Organization WH (1996) Trace elements in human nutrition and health: World Health Organization https://apps.who.int/iris/handle/10665/37931

  18. Newkirk CE, Gagnon ZE, Pavel Sizemore IE (2014) Comparative study of hematological responses to platinum group metals, antimony and silver nanoparticles in animal models. J Envir Sci Health, Part A 49(3):269–280. https://doi.org/10.1080/10934529.2014.846589

    Article  CAS  Google Scholar 

  19. Jin E, Li S, Ren M, Hu Q, Gu Y, Li K (2017) Boron affects immune function through modulation of splenic T lymphocyte subsets, cytokine secretion, and lymphocyte proliferation and apoptosis in rats. Biol Trace Elem Res 178(2):261–275. https://doi.org/10.1007/s12011-017-0932-3

    Article  CAS  PubMed  Google Scholar 

  20. Geyikoglu F, Turkez H (2008) Boron compounds reduce vanadium tetraoxide genotoxicity in human lymphocytes. Environ Toxicol Pharmacol 26(3):342–347. https://doi.org/10.1016/j.etap.2008.07.002

    Article  CAS  PubMed  Google Scholar 

  21. Horiguchi H, Sato T, Kumada H, Yamamoto T, Sakae T (2015) Estimation of relative biological effectiveness for boron neutron capture therapy using the PHITS code coupled with a microdosimetric kinetic model. J Radiat Res 56(2):382–390. https://doi.org/10.1093/jrr/rru109

    Article  CAS  PubMed  Google Scholar 

  22. Rajaganapathy V, Xavier F, Sreekumar D, Mandal P (2011) Heavy metal contamination in soil, water and fodder and their presence in livestock and products: a review. J Environ Sci Technol 4(3):234–249. https://doi.org/10.3923/jest.2011.234.249

    Article  CAS  Google Scholar 

  23. Saez Duarte R, Pasqual A (2000) Availability of cadmium (Cd), lead (Pb), nickel (Ni) and zinc (Zn) in soils, plants and human hair. Ener Agricul 15(1):46–57

    Google Scholar 

  24. Guglick MA, MacAllister CG, Chandra AM, Edwards WC, Qualls CW, Stephens DH (1995) Mercury toxicosis caused by ingestion of a blistering compound in a horse. J Am Vet Med Assoc 206(2):210–214

    Article  CAS  PubMed  Google Scholar 

  25. Aitken P (2001) Selenium toxicity. Practice 23(5):286–289

    Article  Google Scholar 

  26. Daunderer M (1990) Handbuch der Umweltgifte. Erg. lief. II-2.5 (1990/1992)[8 ff.] 1990.

  27. Fazio F, Gugliandolo E, Nava V, Piccione G, Giannetto C, Licata P (2020) Bioaccumulation of mineral elements in different biological substrates of athletic horse from Messina, Italy. Animals 10(10):1877. https://doi.org/10.3390/ani10101877

    Article  PubMed  PubMed Central  Google Scholar 

  28. Skibniewska EM, Skibniewski M (2023) Mercury contents in the liver, kidneys and hair of domestic cats from the Warsaw Metropolitan Area. Applied Sciences 13(1):269

    Article  CAS  Google Scholar 

  29. Fazio F, Piccione G, Tribulato K, Ferrantelli V, Giangrosso G, Arfuso F, Faggio C (2014) Bioaccumulation of heavy metals in blood and tissue of striped mullet in two Italian lakes. J Aquat Anim Health 26:278–284

    Article  CAS  PubMed  Google Scholar 

  30. Di Bella G, Potortì AG, Beltifa A, Ben Mansour H, Nava V, Lo Turco V (2021) Discrimination of Tunisian honey by mineral and trace element chemometrics profiling. Foods 10:724–736 https://doi.org/10.3390/foods10040724

    Article  PubMed  PubMed Central  Google Scholar 

  31. Di Bella G, Licata P, Potortì AG, Crupi R, Nava V, Benameur Q, Rando R, Bartolomeo G, Dugo G, Lo Turco V (2020) Mineral content and physico-chemical parameters of honey from North regions of Algeria. Nat Prod Res:1–8. https://doi.org/10.1080/14786419.2020.1791110

  32. Di Bella G, Tardugno R, Cicero N (2018) Investigation of Hg Content by a rapid analytical technique in Mediterranean Pelagic Fishes. Separations 5(51):1–6. https://doi.org/10.3390/separations5040051

    Article  CAS  Google Scholar 

  33. Jebara A, Lo Turco V, Faggio C, Licata P, Nava V, Potortì AG, Crupi R, Mansour HB, Di Bella G (2021) Monitoring of environmental Hg occurrence in Tunisian coastal areas. Int J Envir Res Pub Health. https://doi.org/10.3390/ijerph18105202

  34. Rudy M, Znamirowska A, Zin M (2007) Level of accumulation of selected heavy metals in horse tissue as a function of age. Med Weter 63:1303–1306

    Google Scholar 

  35. Wahl L, Vervuert I (2022) Commercial hair analysis in horses: a tool to assess mineral intake? J Equine Vet Sci 119:104145. https://doi.org/10.1016/j.jevs.2022.104145

    Article  PubMed  Google Scholar 

  36. Commission Regulation (EU) No 744/2012 of 16 August 2012 amending Annexes I and II to Directive 2002/32/EC of the European Parliament and of the Council as regards maximum levels for arsenic, fluorine, lead, mercury, endosulfan, dioxins, Ambrosia spp., diclazuril and lasalocid A sodium and action thresholds for dioxins.

  37. Kao L, Rusyniak D (2016) Chronic poisoning: trace metals and others. Goldman-Cecil Medicine, 25th edn. Elsevier Saunders, Philadelphia, PA

    Google Scholar 

  38. López-Rodríguez G, Galván M, González-Unzaga M, Ávila JH, Pérez-Labra M (2017) Blood toxic metals and hemoglobin levels in Mexican children. Environ Monit Assess 189(4):179. https://doi.org/10.1007/s10661-017-5886-6

    Article  CAS  PubMed  Google Scholar 

  39. Souza MVD, Fontes MPF, Fernandes RBA (2014) Heavy metals in equine biological components. R Bras Zootec 43(2):60–66

    Article  Google Scholar 

  40. Wichert B, Frank T, Kienzle E (2002) Zinc, copper and selenium intake and status of horses in Bavaria. J Nutr 132:1176S–1777S. https://doi.org/10.1093/jn/132.6.1776S

    Article  Google Scholar 

  41. Micromedex (2011) Healthcare series. Thomson Reuters (Healthcare) Inc, Greenwood Village

    Google Scholar 

  42. Kalashnikov VV, Zajcev AM, Atroshchenko MM, Miroshnikov SA, Zavyalov OA, Frolov AN, Skalny AV (2019) Assessment of gender effects and reference values of mane hair trace element content in English thoroughbred horses (North Caucasus, Russia) using ICP-DRC-MS. Biol Trace Elem Res 191(2):382–388. https://doi.org/10.1007/s12011-019-1634-9

    Article  CAS  PubMed  Google Scholar 

  43. Dede S, Deger Y, Deger S, Tanritanir P (2008) Plasma levels of zinc, copper, copper/zinc ratio and activity of carbonic anhydrase in equine piroplasmosis. Biol Trace Elem Res 125:41–45. https://doi.org/10.1007/s12011-008-8136-5

    Article  CAS  PubMed  Google Scholar 

  44. Streeter RM, Divers TJ, Mittel L, Korn E, Wakshlag JJ (2012) Selenium deficiency associations with gender, breed, serum vitamin E and creatine kinase, clinical signs and diagnoses in horses of different age groups: a retrospective examination 1996-2011. Equine Vet J 44(43):21–35. https://doi.org/10.1111/j.2042-3306.2012.00643.x

    Article  Google Scholar 

  45. Marçal Silva MD, Ferreira Araújo AS, Pinheiro Leal Nunes LA, de Melo WJ, Pratap Singh R (2013) Heavy metals in cowpea (Vigna unguiculata L.) after tannery sludge compost amendment. Chilean j agric res 73(3):282–287. https://doi.org/10.4067/S0718-58392013000300011

    Article  Google Scholar 

  46. Dey S, Dwivedi S (2004) Lead in blood of urban Indian horses. Vet Hum Toxicol 46(4):194–195

    CAS  PubMed  Google Scholar 

Download references

Institutional Review Board Statement

The Ethics Review Board (Veterinary Department Ethics Committee) of the University of Messina considers that this type of project does not fall under the legislation for the protection of animals used for scientific purposes, national decree-law 113/2013 (2010-63-EU directive). It considers there are no procedures conducted on animals. The blood used in this study was obtained from horses brought to a laboratory of analysis for routine (hemocytometric and biochemical) by a veterinarian according to good practices. Following clinical tests, the excess blood was obtained by the authors of the manuscript with the owner’s authorization and written informed consent as a free donation from the owner for scientific purposes.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, P.L..; methodology.; validation; formal analysis, investigation, V.B, E.G. and V.N, writing—original draft preparation, V.N., G.C, M.P, F.A, A.P. and R.C..; All authors have read and agreed to the published version of the manuscript

Corresponding author

Correspondence to Vincenzo Nava.

Ethics declarations

Consent to Participate

Written informed consent has been obtained from the owners to publish this paper.

Conflict of Interest

The authors declare no conflict of interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nava, V., Licata, P., Biondi, V. et al. Horse Whole Blood Trace Elements from Different Sicily Areas: Biomonitoring of Environmental Risk. Biol Trace Elem Res 202, 3086–3096 (2024). https://doi.org/10.1007/s12011-023-03889-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03889-5

Keywords

Navigation