Skip to main content
Log in

Imbalance of Plasma Copper and Zinc Levels and the Association Between the Cu/Zn Ratio and Lipid Peroxidation in Algerian Bipolar Patients

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Trace elements, through their interaction with biomolecules, can play an important role in the pathophysiology of bipolar disorder and protect against oxidative stress effects. The purpose of this study is to examine plasma concentration levels of zinc (Zn) and copper (Cu) of Algerian patients, diagnosed with bipolar disorder, and to compare these levels with those of healthy controls. The Cu/Zn ratio was calculated to explore a possible correlation between these elements and lipid peroxidation in the study groups. A total of 33 patients diagnosed with bipolar disorder and 38 healthy subjects participated in this study. Plasma copper and zinc concentrations were measured using a polarographic analyzer. The marker of plasma lipid peroxidation (Malondialdehyde: MDA) was determined by UV spectrophotometry. Plasma Cu concentrations were higher in patients compared to controls (p < 0.05), while the Zn level was significantly lower. Consequently, the Cu/Zn ratio was significantly different between patients and controls. Regarding MDA, no significant difference was noticed between the two study groups. However, in patients, a negative correlation was found between MDA and Cu/Zn ratio (r= −0.38, p= 0.027). These results suggested that an elevated Cu/Zn ratio is associated with attenuated lipid peroxidation in our bipolar patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Sussulini A, Banzato CE, Arruda MA (2011) Exploratory analysis of the serum ionomic profile for bipolar disorder and lithium treatment. Int J Mass Spectrom 307:182–184. https://doi.org/10.1016/j.ijms.2010.11.013

    Article  CAS  Google Scholar 

  2. Eroglu MZ, Karakus G, Tamam L (2013) Bipolar disorder and suicide. Dusunen Adam 26:139. https://doi.org/10.5350/DAJPN2013260203

    Article  Google Scholar 

  3. Rowland TA, Marwaha S (2018) Epidemiology and risk factors for bipolar disorder. Ther Adv Psychopharmacol 8:251–269. https://doi.org/10.1177/2045125318769235

    Article  PubMed  PubMed Central  Google Scholar 

  4. Esan O, Esan A (2016) Epidemiology and burden of bipolar disorder in Africa: a systematic review of data from Africa. Soc Psychiatry Psychiatr Epidemiol 51:93–100. https://doi.org/10.1007/s00127-015-1091-5

    Article  PubMed  Google Scholar 

  5. Świądro M, Ordon K, Herman M, Dudek D, Wietecha-Posłuszny R (2021) Copper and Zinc as Potential Biomarkers of Mood Disorders and Pandemic Syndrome. Molecules 27:91. https://doi.org/10.3390/molecules27010091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Siwek M, Sowa-Kućma M, Styczeń K, Szewczyk B, Reczyński W et al (2016) Decreased serum zinc concentration during depressive episode in patients with bipolar disorder. J Affect Disord 190:272–277. https://doi.org/10.1016/j.jad.2015.10.026

    Article  CAS  PubMed  Google Scholar 

  7. Styczeń K, Sowa-Kućma M, Siwek M, Dudek D, Reczyński W et al (2016) Study of the serum copper levels in patients with major depressive disorder. Biol Trace Elem Res 174:287–293. https://doi.org/10.1007/s12011-016-0720-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mravunac M, Szymlek-Gay EA, Daly RM, Roberts BR, Formica M et al (2019) Greater circulating copper concentrations and copper/zinc ratios are associated with lower psychological distress, but not cognitive performance, in a sample of Australian older adults. Nutrients 11:2503. https://doi.org/10.3390/nu11102503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Andreazza AC, Wang JF, Salmasi F, Shao L, Young LT (2013) Specific subcellular changes in oxidative stress in prefrontal cortex from patients with bipolar disorder. J Neurochem 127:552–561. https://doi.org/10.1111/jnc.12316

    Article  CAS  PubMed  Google Scholar 

  10. Jiménez-Fernández S, Gurpegui M, Garrote-Rojas D, Gutiérrez-Rojas L, Carretero MD et al (2021) Oxidative stress parameters and antioxidants in patients with bipolar disorder: Results from a meta-analysis comparing patients, including stratification by polarity and euthymic status, with healthy controls. Bipolar Disord 23:117–129. https://doi.org/10.1111/bdi.12980

    Article  CAS  PubMed  Google Scholar 

  11. Liu T, Zhong S, Liao X, Chen J, He T et al (2015) A meta-analysis of oxidative stress markers in depression. PLoS One 10:e0138904. https://doi.org/10.1371/journal.pone.0138904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maes M, Landucci Bonifacio K, Morelli NR, Vargas HO, Barbosa DS, et al. (2019) Major differences in neurooxidative and neuronitrosative stress pathways between major depressive disorder and types I and II bipolar disorder. Mol Neurobiol 56: 141-156. https://doi.org/10.1007/s12035-018-1051-7.

  13. Kazi Tani LS, Gourlan AT, Dennouni-Medjati N, Telouk P, Dali-Sahi M et al (2021) Copper isotopes and copper to zinc ratio as possible biomarkers for thyroid cancer. Front Med 8:698167. https://doi.org/10.3389/fmed.2021.698167

    Article  Google Scholar 

  14. Malavolta M, Piacenza F, Basso A, Giacconi R, Costarelli L et al (2015) Serum copper to zinc ratio: Relationship with aging and health status. Mech Ageing Dev 151:93–100. https://doi.org/10.1016/j.mad.2015.01.004

    Article  CAS  PubMed  Google Scholar 

  15. Attar T, Dennouni-Medjati N, Harek Y, Larabi L (2013) Determination of zinc levels in healthy adults from the west of algeria by differential pulse anodic stripping voltammetry. J Adv Chem 6:855–860. https://doi.org/10.24297/jac.v6i1.964

  16. Attar T, Harek Y, Larabi L (2014) Determination of copper in whole blood by differential pulse adsorptive stripping voltammetry. Mediterr J Chem 2:691–700. https://doi.org/10.13171/mjc.2.6.2014.21.02.25

    Article  CAS  Google Scholar 

  17. Nourooz-Zadeh J (1999) Ferrous ion oxidation in presence of xylenol orange for detection of lipid hydroperoxides in plasma. In: Methods in enzymology. Elsevier, pp 58–62

    Google Scholar 

  18. Ivanova ID, Pal A, Simonelli I, Atanasova B, Ventriglia M et al (2022) Evaluation of zinc, copper, and Cu: Zn ratio in serum, and their implications in the course of COVID-19. J Trace Elem Med Biol 71:126944. https://doi.org/10.1016/j.jtemb.2022.126944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Caroli S, Alimonti A, Coni E, Petrucci F, Senofonte O et al (1994) The assessment of reference values for elements in human biological tissues and fluids: a systematic review. Crit Rev Anal Chem 24:363–398. https://doi.org/10.1080/10408349408048824

    Article  CAS  Google Scholar 

  20. Linter C (1985) Neuropsychiatric aspects of trace elements. Br J Hosp Med (Lond) 34:361–365

    CAS  Google Scholar 

  21. Mustak MS, Rao TS, Shanmugavelu P, Sundar NS, Menon RB et al (2008) Assessment of serum macro and trace element homeostasis and the complexity of inter-element relations in bipolar mood disorders. Clin Chim Acta 394:47–53. https://doi.org/10.1016/j.cca.2008.04.003

    Article  CAS  PubMed  Google Scholar 

  22. Prakash A, Bharti K, Majeed ABA (2015) Zinc: indications in brain disorders. Fundam Clin Pharmacol 29:131–149. https://doi.org/10.1111/fcp.12110

    Article  CAS  PubMed  Google Scholar 

  23. Islam MR, Islam MR, Shalahuddin Qusar M, Islam MS, Kabir MH et al (2018) Alterations of serum macro-minerals and trace elements are associated with major depressive disorder: a case-control study. BMC Psychiatry 18:1–7. https://doi.org/10.1186/s12888-018-1685-z

    Article  CAS  Google Scholar 

  24. Chowdhury MI, Hasan M, Islam MS, Sarwar MS, Amin MN et al (2017) Elevated serum MDA and depleted non-enzymatic antioxidants, macro-minerals and trace elements are associated with bipolar disorder. J Trace Elem Med Biol 39:162–168. https://doi.org/10.1016/j.jtemb.2016.09.012

    Article  CAS  PubMed  Google Scholar 

  25. González-Estecha M, Trasobares EM, Tajima K, Cano S, Fernández C et al (2011) Trace elements in bipolar disorder. J Trace Elem Med Biol 25:S78–S83. https://doi.org/10.1016/j.jtemb.2010.10.015

    Article  CAS  PubMed  Google Scholar 

  26. Misztak P, Opoka W, Topór-Mądry R, Nowak G, Rybakowski JK (2017) The serum concentration of copper in bipolar disorder. Psychiatr Pol 51:469–481. https://doi.org/10.12740/PP/OnlineFirst/65250

    Article  PubMed  Google Scholar 

  27. Manser WW, Khan MA, Hasan KZ (1989) Trace element studies on Karachi population. Part IV: blood copper, zinc, magnesium and lead levels in psychiatric patients with depression, mental retardation and seizure disorders. J Pak Med Assoc 39:269–274

    CAS  PubMed  Google Scholar 

  28. Heitland P, Köster HD (2006) Biomonitoring of 37 trace elements in blood samples from inhabitants of northern Germany by ICP–MS. J Trace Elem Med Biol 20:253–262. https://doi.org/10.1016/j.jtemb.2006.08.001

    Article  CAS  PubMed  Google Scholar 

  29. Squitti R, Pal A, Picozza M, Avan A, Ventriglia M et al (2020) Zinc Therapy in early Alzheimer’s disease: Safety and potential therapeutic efficacy. Biomolecules 10:1164. https://doi.org/10.3390/biom10081164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kotzalidis GD, Ambrosi E, Simonetti A, Cuomo I, Casale AD et al (2015) Neuroinflammation in bipolar disorders. Neuroimmunol Neuroinflamm 2:252–262. https://doi.org/10.4103/2347-8659.167309

    Article  CAS  Google Scholar 

  31. Bailey SL, Carpentier PA, McMahon EJ, Begolka WS, Miller SD (2006) Innate and adaptive immune responses of the central nervous system. Crit Rev Immunol 26:149–188. https://doi.org/10.1615/critrevimmunol.v26.i2.40

    Article  CAS  PubMed  Google Scholar 

  32. Bajramovic J (2011) Regulation of innate immune responses in the central nervous system. CNS Neurol Disord Drug Targets 10:4–24. https://doi.org/10.2174/187152711794488610

    Article  CAS  PubMed  Google Scholar 

  33. Kitazawa M, Hsu H-W, Medeiros R (2016) Copper exposure perturbs brain inflammatory responses and impairs clearance of amyloid-beta. Toxicol Sci 152:194–204. https://doi.org/10.1093/toxsci/kfw081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hu Z, Yu F, Gong P, Qiu Y, Zhou W et al (2014) Subneurotoxic copper (II)-induced NF-κB-dependent microglial activation is associated with mitochondrial ROS. Toxicol Appl Pharmacol 276:95–103. https://doi.org/10.1016/j.taap.2014.01.020

    Article  CAS  PubMed  Google Scholar 

  35. Zucconi GG, Cipriani S, Scattoni R, Balgkouranidou I, Hawkins D et al (2007) Copper deficiency elicits glial and neuronal response typical of neurodegenerative disorders. Neuropathol Appl Neurobiol. 33:212–225. https://doi.org/10.1111/j.1365-2990.2006.00793.x

    Article  CAS  PubMed  Google Scholar 

  36. Brewer GJ Copper excess, zinc deficiency, and cognition loss in Alzheimer’s disease. BioFactors (Oxford, England) 38(2):107–113. https://doi.org/10.1002/biof.1005

  37. Sarris J, Ravindran A, Yatham LN, Marx W, Rucklidge JJ et al (2022) Clinician guidelines for the treatment of psychiatric disorders with nutraceuticals and phytoceuticals: The World Federation of Societies of Biological Psychiatry (WFSBP) and Canadian Network for Mood and Anxiety Treatments (CANMAT) Taskforce. World J Biol Psychiatry 23:424–455. https://doi.org/10.1080/15622975.2021.2013041

    Article  CAS  PubMed  Google Scholar 

  38. Kabzinska-Milewska K, Czajeczny D, Wójciak RW (2021) Effect of lithium treatment on the content of lithium, copper, calcium, magnesium, zinc and iron in the hair of patients with bipolar disorder. J Elem 26. https://doi.org/10.5601/jelem.2021.26.3.2172

  39. Beyer JL, Payne ME (2016) Nutrition and bipolar depression. Psychiatric. Clinics 39:75–86. https://doi.org/10.1016/j.psc.2015.10.003

    Article  Google Scholar 

  40. Alpers DH (2017) Les limites pharmacocinétiques pour définir la dose adéquate de la supplémentation en zinc. Bull Acad Natl Med 201:431–438. https://doi.org/10.1016/S0001-4079(19)30512-6

    Article  CAS  Google Scholar 

  41. Wolf TL, Kotun J, Meador-Woodruff JH (2006) Plasma copper, iron, ceruloplasmin and ferroxidase activity in schizophrenia. Schizophr Res 86:167–171. https://doi.org/10.1016/j.schres.2006.05.027

    Article  PubMed  Google Scholar 

  42. Vacheron-Trystram M-N, Braitman A, Cheref S, Auffray L (2004) Antipsychotiques et troubles bipolaires. L'Encéphale 30:417–424. https://doi.org/10.1016/S0013-7006(04)95456-5

    Article  PubMed  Google Scholar 

  43. Khadir S, Lafendi M (2020) Intérêt du Suivi Thérapeutique Pharmacologique des thymorégulateurs dans la prise en charge des patients bipolaires du Service de Psychiatrie du CHU-Tlemcen. Thèse pour l’obtention du diplôme de docteur en pharmacie, Université de Tlemcen. http://dspace.univ-tlemcen.dz/handle/112/18370

  44. Kawahara M, Tanaka K-i, Kato-Negishi M (2022) Copper Biology in Health and Disease: Crosstalk of copper and zinc in the pathogenesis of vascular dementia. J Clin Biochem Nutr 71:7. https://doi.org/10.3164/jcbn.22-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kuloglu M, Ustundag B, Atmaca M, Canatan H, Tezcan AE et al (2002) Lipid peroxidation and antioxidant enzyme levels in patients with schizophrenia and bipolar disorder. Cell Biochem Funct 20:171–175. https://doi.org/10.1002/cbf.940

    Article  CAS  PubMed  Google Scholar 

  46. Maes M, Yirmyia R, Noraberg J, Brene S, Hibbeln J et al (2009) The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis 24:27–53. https://doi.org/10.1007/s11011-008-9118-1

    Article  CAS  PubMed  Google Scholar 

  47. Fornito A, Malhi G, Lagopoulos J, Ivanovski B, Wood SJ et al (2007) In vivo evidence for early neurodevelopmental anomaly of the anterior cingulate cortex in bipolar disorder. Acta Psychiatr Scand 116:467–472. https://doi.org/10.1111/j.1600-0447.2007.01069.x

    Article  CAS  PubMed  Google Scholar 

  48. Duan L, Cheng Y, Jin Y (2010) Effect of copper intake and copper-zinc ratio on rat lipid peroxidation in copper deficiency. Wei Sheng Yan Jiu= J Hyg Res 39:25–28

    Google Scholar 

  49. Roughead ZK, Johnson LK, Hunt JR (1999) Dietary copper primarily affects antioxidant capacity and dietary iron mainly affects iron status in a surface response study of female rats fed varying concentrations of iron, zinc and copper. J Nutr 129:1368–1376. https://doi.org/10.1093/jn/129.7.1368

    Article  CAS  PubMed  Google Scholar 

  50. Mezzetti A, Pierdomenico SD, Costantini F, Romano F, De Cesare D et al (1998) Copper/zinc ratio and systemic oxidant load: effect of aging and aging-related degenerative diseases. Free Radic Biol Med 25:676–681. https://doi.org/10.1016/S0891-5849(98)00109-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the patients and healthy volunteers who participated in this study.

Funding

This work was supported by the General Direction of Scientific Research and Technological Development (DGRSDT), as part of the socio-economic research project entitled “Implication of micronutrients in the development of certain pathologies in western Algeria” (Project No. 12/Univ-Tlemcen/DGRSDT, 2019, Algeria).

Author information

Authors and Affiliations

Authors

Contributions

Nouria Dennouni-Medjati conceived the study design. Ikram Chebieb and Cherifa Benosman collected the sample and data via face-to-face interviews. Yahia Harek performed the Cu and Zn measurements. Ikram Chebieb and Baya Guermouche analyzed MDA. Ikram Chebieb and Youssouf Kachekouche performed the statistical analysis. Ikram Chebieb and Nouria Dennouni-Medjati prepared the first draft of the manuscript. Nouria Dennouni-Medjati and Majda Dali-Sahi corrected the final version. All authors read and approved the final version.

Corresponding author

Correspondence to Ikram Chebieb.

Ethics declarations

Ethics Approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the scientific council of the faculty as well as the ethics and deontology committee of the University of Tlemcen (CEDUT 03/07/2018).

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chebieb, I., Medjati, N.D., Harek, Y. et al. Imbalance of Plasma Copper and Zinc Levels and the Association Between the Cu/Zn Ratio and Lipid Peroxidation in Algerian Bipolar Patients. Biol Trace Elem Res 202, 2450–2456 (2024). https://doi.org/10.1007/s12011-023-03858-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03858-y

Keywords

Navigation