Skip to main content

Advertisement

Log in

Apoptosis Induction by ZnFe2O4-Ag Biosynthesized by Chlorella vulgaris in MCF-7 Breast Cancer Cell Line

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The incidence and mortality of breast cancer are growing which indicates the inefficiency of the current chemotherapy drugs. Due to the anticancer potential of Zn and Ag and the magnetic feature of iron oxide, in this work, we synthesized ZnFe2O4-Ag nanocomposite using Chlorella vulgaris and investigated its anticancer effect on breast cancer cell line. Physicochemical characterization was performed by FT-IR, XRD, SEM, TEM, VSM, EDS mapping, UV, and zeta potential assays. Cell cytotoxicity and apoptosis frequency were studied by the MTT and flow cytometry assays. Also, cell cycle analysis, Hoechst staining, and measuring ROS (reactive oxygen species) level were performed. The synthesized particles were almost spherical with a size range of 14–52 nm. The FT-IR and XRD assays confirmed the proper synthesis of the particles and VSM analysis showed that particles had magnetic property and the maximum saturation magnetization was 0.8 Emu/g. Also, the EDS mapping of the nanocomposite showed the Zn, Fe, O, and Ag elements. The MTT assay showed that the 50% inhibitory concentration (IC50) of ZnFe2O4-Ag for breast cancer and normal cells were 28 and 154 µg/mL, respectively, and the nanocomposite had stronger anticancer activity than cisplatin (IC50 = 84 µg/mL). Flow cytometry analysis showed that the exposure to the nanocomposite induced cell apoptosis by 77.5% and significantly induced ROS generation. Also, treating breast cancer cells with the nanocomposite induced cell cycle arrest and apoptotic features, including chromatin condensation and fragmentation. In conclusion, ZnFe2O4-Ag nanocomposite synthesized by C. vulgaris could suppress the proliferation of breast cancer cells by the generation of oxidative stress, apoptosis induction, and cell cycle arrest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin 71(3):209–49. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Singh R (2019) Nanotechnology based therapeutic application in cancer diagnosis and therapy. 3 Biotech 9(11):415. https://doi.org/10.1007/s13205-019-1940-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhao B, Chen S, Hong Y, Jia L, Zhou Y, He X, Wang Y, Tian Z, Yang Z, Gao D (2022) Research progress of conjugated nanomedicine for cancer treatment. Pharmaceutics 14(7):1522. https://doi.org/10.3390/pharmaceutics14071522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hernández-Hernández AA, Aguirre-Álvarez G, Cariño-Cortés R, Mendoza-Huizar LH, Jiménez-Alvarado R (2020) Iron oxide nanoparticles: synthesis, functionalization, and applications in diagnosis and treatment of cancer. Chem Pap 74(11):3809–3824. https://doi.org/10.1007/s11696-020-01229-8

    Article  CAS  Google Scholar 

  5. Mirzaei H, Darroudi M (2017) Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram Int 43(1):907–914. https://doi.org/10.1016/j.ceramint.2016.10.051

    Article  CAS  Google Scholar 

  6. Faridul Hasan KM, Xiaoyi L, Shaoqin Z, Horvath PG, Bak M, Bejp L, Sipos G, Alpar T (2022) Functional silver nanoparticles synthesis from sustainable point of view: 2000 to 2023 - A review on game changing materials. Heliyon 8(12):e12322. https://doi.org/10.1016/j.heliyon.2022.e12322

    Article  CAS  Google Scholar 

  7. Jabeen S, Qureshi R, Munazir M, Maqsood M, Munir M, Shah SS, Rahim BZ (2021) Application of green synthesized silver nanoparticles in cancer treatment—a critical review. Mater Res Express 8(9):092001. https://doi.org/10.1088/2053-1591/ac1de3

    Article  ADS  CAS  Google Scholar 

  8. Gour A, Jain NK (2019) Advances in green synthesis of nanoparticles. Artif Cells, Nanomedicine, Biotechnol 47(1):844–851

    Article  CAS  Google Scholar 

  9. Soleimani M, Habibi-Pirkoohi M (2017) Biosynthesis of silver nanoparticles using Chlorella vulgaris and evaluation of the antibacterial efficacy against Staphylococcus aureus. Avicenna J Med Biotechnol 9(3):120–125

    PubMed  PubMed Central  Google Scholar 

  10. Ebrahimzadeh Z, Salehzadeh A, Naeemi AS, Jalali A (2020) Silver nanoparticles biosynthesized by Anabaena flos-aquae enhance the apoptosis in breast cancer cell line. Bull Mater Sci 43:1–7. https://doi.org/10.1007/s12034-020-2064-1

    Article  CAS  Google Scholar 

  11. Salehzadeh A, Naeemi AS, Khaknezhad L, Moradi-Shoeili Z, Shandiz SA (2019) Fe3O4/Ag nanocomposite biosynthesised using Spirulina platensis extract and its enhanced anticancer efficiency. IET Nanobiotechnol 13(7):766–770. https://doi.org/10.1049/iet-nbt.2018.5364

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shokoofeh N, Moradi-Shoeili Z, Naeemi AS, Jalali A, Hedayati M, Salehzadeh A (2019) Biosynthesis of Fe3O4@ Ag nanocomposite and evaluation of its performance on expression of norA and norB efflux pump genes in ciprofloxacin-resistant Staphylococcus aureus. Biol Trace Elem Res 191:522–530. https://doi.org/10.1007/s12011-019-1632-y

    Article  CAS  PubMed  Google Scholar 

  13. Sadat Shandiz SA, Montazeri A, Abdolhosseini M, Hadad Shahrestani S, Hedayati M, Moradi-Shoeili Z, Salehzadeh A (2018) Functionalization of Ag nanoparticles by glutamic acid and conjugation of Ag@ Glu by thiosemicarbazide enhances the apoptosis of human breast cancer MCF-7 cells. J Cluster Sci 29:1107–1114. https://doi.org/10.1007/s10876-018-1424-0

    Article  CAS  Google Scholar 

  14. Ahn EY, Park Y (2020) Anticancer prospects of silver nanoparticles green-synthesized by plant extracts. Mater Sci Eng: C. 116:111253. https://doi.org/10.1016/j.msec.2020.111253

    Article  CAS  Google Scholar 

  15. Mladenova B, Milusheva Y, Karsheva M, Hinkov I, Stankulov T, Borisov G, Boukoureshtlieva R (2018) Nanosized Ag particles as catalyst in gas-diffusion electrodes for ORR. Bul Chem Commun 50:114–118

    Google Scholar 

  16. Sarala E, Madhukara Naik M, Vinuth M, Rami Reddy YV, Sujatha HR (2020) Green synthesis of Lawsonia inermis-mediated zinc ferrite nanoparticles for magnetic studies and anticancer activity against breast cancer (MCF-7) cell lines. J Mater Sci: Mater Electron 31:8589–8596. https://doi.org/10.1007/s10854-020-03394-8

    Article  CAS  Google Scholar 

  17. Abbasian AR, Shafiee AM (2019) One-step solution combustion synthesis and characterization of ZnFe 2 O 4 and ZnFe 1.6 O 4 nanoparticles. Appl Phys A. 125:1–2. https://doi.org/10.1007/s00339-019-3017-7

    Article  ADS  CAS  Google Scholar 

  18. Sadhukhan P, Kundu M, Chatterjee S, Ghosh N, Manna P, Das J, Sil PC (2019) Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy. Mater Sci Eng, C 100:129–140. https://doi.org/10.1016/j.msec.2019.02.096

    Article  CAS  Google Scholar 

  19. Nie S, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288. https://doi.org/10.1146/annurev.bioeng.9.060906.152025

    Article  CAS  PubMed  Google Scholar 

  20. Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J (2010) Magnetic nanoparticles and targeted drug delivering. Pharmacol Res 62(2):144–149. https://doi.org/10.1016/j.phrs.2010.01.014

    Article  CAS  PubMed  Google Scholar 

  21. Vangijzegem T, Stanicki D, Laurent S (2019) Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin Drug Deliv 16(1):69–78. https://doi.org/10.1080/17425247.2019.1554647

    Article  CAS  PubMed  Google Scholar 

  22. Hunter RJ (2013) Zeta potential in colloid science: principles and applications, vol 2. Academic Press

    Google Scholar 

  23. Mahajan A, Arya A, Chundawat TS (2019) Green synthesis of silver nanoparticles using green alga (Chlorella vulgaris) and its application for synthesis of quinolines derivatives. Synth Commun 49(15):1926–1937. https://doi.org/10.1080/00397911.2019.1610776

    Article  CAS  Google Scholar 

  24. Win TT, Khan S, Bo B, Zada S, Fu P (2021) Green synthesis and characterization of Fe3O4 nanoparticles using Chlorella-K01 extract for potential enhancement of plant growth stimulating and antifungal activity. Sci Rep 11(1):1–1. https://doi.org/10.1038/s41598-021-01538-2

    Article  CAS  Google Scholar 

  25. Huerta-Aguilar CA, Diaz-Puerto ZJ, Tecuapa-Flores ED, Thangarasu P (2022) Crystal plane impact of ZnFe2O4-Ag nanoparticles influencing photocatalytical and antibacterial properties: experimental and theoretical studies. ACS Omega 7(38):33985–34001. https://doi.org/10.1021/acsomega.2c03153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tabassi NR, Ghasemiyan R, Brandkam MR, Hosseinpour T, Abkenar SK, Nesaz FR, Salehzadeh A (2022) Green synthesis of TiFe2O4@ Ag nanocomposite using Spirulina platensis; characterization of their anticancer activity and evaluation of their effect on the expression of Bax, p53, and Bcl-2 genes in AGS cell line. J Cluster Sci 33(4):1601–1611. https://doi.org/10.1007/s10876-021-02083-8

    Article  CAS  Google Scholar 

  27. Sharif AP, Habibi K, Bijarpas ZK, Tolami HF, Alkinani TA, Jameh M, Dehkaei AA, Monhaser SK, Daemi HB, Mahmoudi A, Masouleh RS (2023) Cytotoxic effect of a novel GaFe2O4@ Ag nanocomposite synthesized by Scenedesmus obliquus on gastric cancer cell line and evaluation of BAX, Bcl-2 and CASP8 genes expression. J Cluster Sci 34(2):1065–1075. https://doi.org/10.1007/s10876-022-02288-5

    Article  CAS  Google Scholar 

  28. Kardan M, Pouraei A, Jaahbin N, Ghasemipour T, Mehraban F, Noveiri MJS, Hedayati M, Salehzadeh A (2022) Cytotoxicity of bio-synthesized MgFe2O4@ Ag nanocomposite on gastric cancer cell line and evaluation its effect on Bax, p53 and Bcl-2 genes expression. J Clust Sci 33(4):1579–88. https://doi.org/10.1007/s10876-021-02087-4

    Article  CAS  Google Scholar 

  29. Rudrappa M, Kumar RS, Nagaraja SK, Hiremath H, Gunagambhire PV, Almansour AI, Perumal K, Nayaka S (2023) Myco-Nanofabrication of silver nanoparticles by Penicillium brasilianum NP5 and their antimicrobial, photoprotective and anticancer effect on MDA-MB-231 Breast Cancer Cell Line. Antibiotics 12(3):567. https://doi.org/10.3390/antibiotics12030567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bhat MP, Kumar RS, Rudrappa M, Basavarajappa DS, Swamy PS, Almansour AI, Perumal K, Nayaka S (2023) Bio-inspired silver nanoparticles from Artocarpus lakoocha fruit extract and evaluation of their antibacterial activity and anticancer activity on human prostate cancer cell line. Appl Nanosci 13(4):3041–3051. https://doi.org/10.1007/s13204-022-02381-1

    Article  ADS  CAS  Google Scholar 

  31. Rudrappa M, Rudayni HA, Assiri RA, Bepari A, Basavarajappa DS, Nagaraja SK, Chakraborty B, Swamy PS, Agadi SN, Niazi SK, Nayaka S (2022) Plumeria alba-mediated green synthesis of silver nanoparticles exhibits antimicrobial effect and anti-oncogenic activity against glioblastoma U118 MG cancer cell line. Nanomaterials 12(3):493. https://doi.org/10.3390/nano12030493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bhat MP, Kumar RS, Almansour AI, Arumugam N, Dupadahalli K, Rudrappa M, Shivapoojar Basavarajappa D, Sathyanarayana Swamy P, Perumal K, Nayaka S (2023) Characterization, antimicrobial activity and anticancer activity of Pyrostegia venusta leaf extract-synthesized silver nanoparticles against COS-7 cell line. Appl Nanosci 13(3):2303–2314. https://doi.org/10.1007/s13204-021-02120-y

    Article  ADS  CAS  Google Scholar 

  33. Papalazarou V, Maddocks OD (2021) Supply and demand: cellular nutrient uptake and exchange in cancer. Mol Cell 81(18):3731–3748. https://doi.org/10.1016/j.molcel.2021.08.026

    Article  CAS  PubMed  Google Scholar 

  34. Jodati S, Gorji S, Sharif AP, Taramsari SM, Salehzadeh A (2022) A novel biosynthesized ZnFe2O4@ Ag nanocomposite: implications for cytotoxicity, gene expression and antiproliferative studies in breast cancer cell line. J Clust Sci 1–2. https://doi.org/10.1007/s10876-022-02234-5

  35. Garfami M, Jalali A, Salehzadeh A (2020) A novel CuFe2O4@ Ag nanocomposite biosynthesized by Spirulina platensis exhibits an anticancer effect on human gastric adenocarcinoma and Michigan Cancer Foundation-7 breast cancer cell lines. Appl Organomet Chem 34(12):e5971. https://doi.org/10.1002/aoc.5971

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to Dr. Akram Sadat Naeemi from the University of Guilan for her help and support.

Author information

Authors and Affiliations

Authors

Contributions

A.S. and S.S.SH.: conceptualization. A.S.: methodology. A.S. and A.A.: formal analysis and investigation. A.S., S.S.SH., and V.Z.: writing original draft preparation. A.S., S.S.SH., and V.Z.: editing. A.A.: resources. A.A.; A.S., V.Z., and S.S.SH.: supervision.

Corresponding authors

Correspondence to Vajiheh Zarrinpour or Ali Salehzadeh.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad Amooie, A., Zarrinpour, V., Sadat Shandiz, S.A. et al. Apoptosis Induction by ZnFe2O4-Ag Biosynthesized by Chlorella vulgaris in MCF-7 Breast Cancer Cell Line. Biol Trace Elem Res 202, 2022–2035 (2024). https://doi.org/10.1007/s12011-023-03814-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03814-w

Keywords

Navigation