Skip to main content

Advertisement

Log in

The Role of Glycogen Synthase Kinase-3β in the Zinc-Mediated Neuroprotective Effect of Metformin in Rats with Glutamate Neurotoxicity

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Metformin has been suggested to have protective effects on the central nervous system, but the mechanism is unknown. The similarity between the effects of metformin and the inhibition of glycogen synthase kinase (GSK)-3β suggests that metformin may inhibit GSK-3β. In addition, zinc is an important element that inhibits GSK-3β by phosphorylation. In this study, we investigated whether the effects of metformin on neuroprotection and neuronal survival were mediated by zinc-dependent inhibition of GSK-3β in rats with glutamate-induced neurotoxicity. Forty adult male rats were divided into 5 groups: control, glutamate, metformin + glutamate, zinc deficiency + glutamate, and zinc deficiency + metformin + glutamate. Zinc deficiency was induced with a zinc-poor pellet. Metformin was orally administered for 35 days. D-glutamic acid was intraperitoneally administered on the 35th day. On the 38th day, neurodegeneration was examined histopathologically, and the effects on neuronal protection and survival were evaluated via intracellular S-100β immunohistochemical staining. The findings were examined in relation to nonphosphorylated (active) GSK-3β levels and oxidative stress parameters in brain tissue and blood. Neurodegeneration was increased (p < 0.05) in rats fed a zinc-deficient diet. Active GSK-3β levels were increased in groups with neurodegeneration (p < 0.01). Decreased neurodegeneration, increased neuronal survival (p < 0.01), decreased active GSK-3β (p < 0.01) levels and oxidative stress parameters, and increased antioxidant parameters were observed in groups treated with metformin (p < 0.01). Metformin had fewer protective effects on rats fed a zinc-deficient diet. Metformin may exert neuroprotective effects and increase S-100β-mediated neuronal survival by zinc-dependent inhibition of GSK-3β during glutamate neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The raw data supporting this study will be available by authors to any qualified researcher upon request.

References

  1. Collier CA, Bruce CR, Smith AC, Lopaschuk G, Dyck DJ (2006) Metformin counters the insulin-induced suppression of fatty acid oxidation and stimulation of triacylglycerol storage in rodent skeletal muscle. Am J Physiol Endocrinol Metab 291(1): E182–E189. https://doi.org/10.1152/ajpendo.00272.2005

  2. Russo GL, Russo M, Ungaro P (2013) AMP-activated protein kinase: a target for old drugs against diabetes and cancer. Biochem Pharmacol 86(3):339–350. https://doi.org/10.1016/j.bcp.2013.05.023

    Article  CAS  PubMed  Google Scholar 

  3. Ashabi G, Khalaj L, Khodagholi F, Goudarzvand M, Sarkaki A (2015) Pre-treatment with metformin activates Nrf2 antioxidant pathways and inhibits inflammatory responses through induction of AMPK after transient global cerebral ischemia. Metab Brain Dis 30(3):747–754. https://doi.org/10.1007/s11011-014-9632-2

    Article  CAS  PubMed  Google Scholar 

  4. Jiang T, Yu JT, Zhu XC, Wang HF, Tan MS, Cao L, Zhang QQ, Gao L, Shi JQ, Zhang YD, Tan L (2014) Acute metformin preconditioning confers neuroprotection against focal cerebral ischaemia by pre-activation of AMPK-dependent autophagy. Br J Pharmacol 171(13):3146–3157. https://doi.org/10.1111/bph.12655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jin Q, Cheng J, Liu Y, Wu J, Wang X, Wei S, Zhou X, Qin Z, Jia J, Zhen X (2014) Improvement of functional recovery by chronic metformin treatment is associated with enhanced alternative activation of microglia/macrophages and increased angiogenesis and neurogenesis following experimental stroke. Brain Behav Immun 40:131–142. https://doi.org/10.1016/j.bbi.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  6. Sutherland C, Leighton IA, Cohen P (1993) Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem J 296(Pt 1):15–19. https://doi.org/10.1042/bj2960015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Grabinski T, Kanaan NM (2016) Novel non-phosphorylated serine 9/21 GSK3β/α antibodies: expanding the tools for studying GSK3 regulation. Front Mol Neurosci 9:123. https://doi.org/10.3389/fnmol.2016.00123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Watcharasit P, Bijur GN, Zmijewski JW, Song L, Zmijewska A, Chen X, Johnson GV, Jope RS (2002) Direct, activating interaction between glycogen synthase kinase-3beta and p53 after DNA damage. Proc Natl Acad Sci USA 99:7951–7955. https://doi.org/10.1073/pnas.122062299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hanumanthappa P, Densi A, Krishnamurthy RG (2014) Glycogen synthase kinase-β3 in ischemic neuronal death. Curr Neurovasc Res 11(3):271–278. https://doi.org/10.2174/1567202611666140520151002

    Article  CAS  PubMed  Google Scholar 

  10. Chuang DM, Wang Z, Chiu CT (2011) GSK-3 as a target for lithium-induced neuroprotection against excitotoxicity in neuronal cultures and animal models of ischemic stroke. Front Mol Neurosci 4:15. https://doi.org/10.3389/fnmol.2011.00015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kelly KL, Ruderman NB (1993) Insulin-stimulated phosphatidylinositol 3-kinase. Association with a 185-kDa tyrosine-phosphorylated protein (IRS-1) and localization in a low-density membrane vesicle. J Biol Chem 268(6):4391–4398. https://doi.org/10.1074/jbc.271.19.11222

  12. Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6(6):449–462. https://doi.org/10.1038/nrn1671

    Article  CAS  PubMed  Google Scholar 

  13. Jiménez-Jiménez FJ, Molina JA, Aguilar MV, Meseguer I, Mateos-Vega CJ, González-Muñoz MJ, de Bustos F, Martínez-Salio A, Ortí-Pareja M, Zurdo M, Martínez-Para MC (1998) Cerebrospinal fluid levels of transition metals in patients with Parkinson’s disease. J Neural Transm 105(4–5):497–505. https://doi.org/10.1007/s007020050073

    Article  PubMed  Google Scholar 

  14. Rulon LL, Robertson JD, Lovell MA et al (2000) (2000) Serum zinc levels and Alzheimer’s disease. Biol Trace Elem Res 75:79–85. https://doi.org/10.1385/BTER:75:1-3:79

    Article  CAS  PubMed  Google Scholar 

  15. Ilouz R, Kaidanovich O, Gurwitz D, Eldar-Finkelman H (2002) Inhibition of glycogen synthase kinase-3beta by bivalent zinc ions: insight into the insulin-mimetic action of zinc. Biochem Biophys Res Commun 295(1):102–106. https://doi.org/10.1016/s0006-291x(02)00636-8

    Article  CAS  PubMed  Google Scholar 

  16. Sorci G, Bianchi R, Riuzzi F, Tubaro C, Arcuri C, Giambanco I, Donato R (2010) S100B protein, a damage-associated molecular pattern protein in the brain and heart, and beyond. Cardiovasc Psychiatry Neurol 656481. https://doi.org/10.1155/2010/656481

  17. Garg R, Benedetti LG, Abera MB, Wang H, Abba M, Kazanietz MG (2014) Protein kinase C and cancer: what we know and what we do not. Oncogene 33(45):5225–5237. https://doi.org/10.1038/onc.2013.524

    Article  CAS  PubMed  Google Scholar 

  18. Arcuri C, Bianchi R, Brozzi F, Donato R (2005) S100B increases proliferation in PC12 neuronal cells and reduces their responsiveness to nerve growth factor via Akt activation. J Biol Chem 280(6):4402–4414. https://doi.org/10.1074/jbc.M406440200

    Article  CAS  PubMed  Google Scholar 

  19. Francoz S, Froment P, Bogaerts S, De Clercq S, Maetens M, Doumont G, Bellefroid E, Marine JC (2006) Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo. Proc Natl Acad Sci USA 103(9):3232–3237. https://doi.org/10.1073/pnas.0508476103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Choi YH, Kim SG, Lee MG (2006) Dose-independent pharmacokinetics of metformin in rats: hepatic and gastrointestinal first-pass effects. J Pharm Sci 95(11):2543–2552. https://doi.org/10.1002/jps.20744

    Article  CAS  PubMed  Google Scholar 

  21. Patil SP, Jain PD, Ghumatkar PJ, Tambe R, Sathaye S (2014) Neuroprotective effect of metformin in MPTP-induced Parkinson’s disease in mice. Neuroscience 277:747–754. https://doi.org/10.1016/j.neuroscience.2014.07.046

    Article  CAS  PubMed  Google Scholar 

  22. Wang YW, He SJ, Feng X, Cheng J, Luo YT, Tian L, Huang Q (2017) Metformin: a review of its potential indications. Drug Des Dev Ther 11:2421–2429. https://doi.org/10.2147/DDDT.S141675

    Article  CAS  Google Scholar 

  23. Arauz-Contreras J, Feria-Velasco A (1984) Monosodium-L-glutamate-induced convulsions—I. Differences in seizure pattern and duration of effect as a function of age in rats. Gen Pharmacol 15(5):391–395. https://doi.org/10.1016/0306-3623(84)90036-3

  24. Peñafiel R, Cremades A, Monserrat F et al (1991) Monosodium glutamate induced convulsions in rats: influence of route of administration, temperature and age. Amino Acids 1:81–89. https://doi.org/10.1007/BF00808094

    Article  PubMed  Google Scholar 

  25. Hinzman JM, Thomas TC, Burmeister JJ, Quintero JE, Huettl P, Pomerleau F, Gerhardt GA, Lifshitz J (2010) Diffuse brain injury elevates tonic glutamate levels and potassium-evoked glutamate release in discrete brain regions at two days post-injury: an enzyme-based microelectrode array study. J Neurotrauma 27(5):889–899. https://doi.org/10.1089/neu.2009.1238

    Article  PubMed  PubMed Central  Google Scholar 

  26. McEntee WJ, Crook TH (1993) Glutamate: its role in learning, memory, and the aging brain. Psychopharmacology 111(4):391–401. https://doi.org/10.1007/BF02253527

    Article  CAS  PubMed  Google Scholar 

  27. Hanasand M, Omdal R, Norheim KB, Gøransson LG, Brede C, Jonsson G (2012) Improved detection of advanced oxidation protein products in plasma. Clin Chim Acta 413(9–10):901–906. https://doi.org/10.1016/j.cca.2012.01.038

  28. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310. https://doi.org/10.1016/s0076-6879(78)52032-6

    Article  CAS  PubMed  Google Scholar 

  29. Jiang ZY, Hunt JV, Wolff SP (1992) Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal Biochem 202(2):384–389. https://doi.org/10.1016/0003-2697(92)90122-n

    Article  CAS  PubMed  Google Scholar 

  30. Yanar K, Atukeren P, Cebe T, Kunbaz A, Ozan T, Kansu AD, Durmaz S, Güleç V, Belce A, Aydın S, Çakatay U, Rizvi SI (2015) Ameliorative effects of testosterone administration on renal redox homeostasis in naturally aged rats. Rejuvenation Res 18(4):299–312. https://doi.org/10.1089/rej.2014.1640

    Article  CAS  PubMed  Google Scholar 

  31. Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34(3):497–500

    Article  CAS  PubMed  Google Scholar 

  32. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/s0076-6879(84)05016-3

    Article  CAS  PubMed  Google Scholar 

  33. Adamo AM, Zago MP, Mackenzie GG, Aimo L, Keen CL, Keenan A, Oteiza PI (2010) The role of zinc in the modulation of neuronal proliferation and apoptosis. Neurotox Res 17(1):1–14. https://doi.org/10.1007/s12640-009-9067-4

    Article  CAS  PubMed  Google Scholar 

  34. Seth R, Corniola RS, Gower-Winter SD, Morgan TJ Jr, Bishop B, Levenson CW (2015) Zinc deficiency induces apoptosis via mitochondrial p53- and caspase-dependent pathways in human neuronal precursor cells. J Trace Elem Med Biol 30:59–65. https://doi.org/10.1016/j.jtemb.2014.10.010

    Article  CAS  PubMed  Google Scholar 

  35. Abramov AY, Scorziello A, Duchen MR (2007) Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neuroscience 27(5):1129–1138. https://doi.org/10.1523/JNEUROSCI.4468-06.2007

    Article  CAS  PubMed  Google Scholar 

  36. Shinohe A, Hashimoto K, Nakamura K et al (2006) Increased serum levels of glutamate in adult patients with autism. Prog Neuropsychopharmacol Biol Psychiatry 30(8):1472–1477. https://doi.org/10.1016/j.pnpbp.2006.06.013

    Article  CAS  PubMed  Google Scholar 

  37. Murphy MP (1999) Nitric oxide and cell death. Biochem Biophys Acta 1411(2–3):401–414. https://doi.org/10.1016/s0005-2728(99)00029-8

    Article  CAS  PubMed  Google Scholar 

  38. Kirpichnikov D, McFarlane SI, Sowers JR (2002) Metformin: an update. Ann Intern Med 137(1):25–33. https://doi.org/10.7326/0003-4819-137-1-200207020-00009

    Article  CAS  PubMed  Google Scholar 

  39. Leng Y, Chuang DM (2006) Endogenous alpha-synuclein is induced by valproic acid through histone deacetylase inhibition and participates in neuroprotection against glutamate-induced excitotoxicity. J Neuroscience 26(28):7502–7512. https://doi.org/10.1523/JNEUROSCI.0096-06.2006

    Article  CAS  PubMed  Google Scholar 

  40. Leng Y, Liang MH, Ren M, Marinova Z, Leeds P, Chuang DM (2008) Synergistic neuroprotective effects of lithium and valproic acid or other histone deacetylase inhibitors in neurons: roles of glycogen synthase kinase-3 inhibition. J Neuroscience 28(10):2576–2588. https://doi.org/10.1523/JNEUROSCI.5467-07.2008

    Article  CAS  PubMed  Google Scholar 

  41. Cross DA, Culbert AA, Chalmers KA, Facci L, Skaper SD, Reith AD (2001) Selective small-molecule inhibitors of glycogen synthase kinase-3 activity protect primary neurones from death. J Neurochem 77(1):94–102. https://doi.org/10.1046/j.1471-4159.2001.t01-1-00251.x

    Article  CAS  PubMed  Google Scholar 

  42. Miranda ER, Dey CS (2004) Effect of chromium and zinc on insulin signaling in skeletal muscle cells. Biol Trace Elem Res 101(1):19–36. https://doi.org/10.1385/BTER:101:1:19

    Article  CAS  PubMed  Google Scholar 

  43. Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ (2004) Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Investig 113(11):1535–1549. https://doi.org/10.1172/JCI19906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shin S, Wolgamott L, Yu Y, Blenis J, Yoon SO (2011) Glycogen synthase kinase (GSK)-3 promotes p70 ribosomal protein S6 kinase (p70S6K) activity and cell proliferation. Proc Natl Acad Sci USA 108(47):E1204–E1213. https://doi.org/10.1073/pnas.1110195108

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lynch CJ, Patson BJ, Goodman SA, Trapolsi D, Kimball SR (2001) Zinc stimulates the activity of the insulin- and nutrient-regulated protein kinase mTOR. Am J Physiol Endocrinol Metab 281(1):E25–E34. https://doi.org/10.1152/ajpendo.2001.281.1.E25

  46. Huang XT, Li C, Peng XP et al (2017) An excessive increase in glutamate contributes to glucose-toxicity in β-cells via activation of pancreatic NMDA receptors in rodent diabetes. Sci Rep 7:44120. https://doi.org/10.1038/srep44120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shen W, Taylor B, Jin Q et al (2015) Inhibition of DYRK1A and GSK3B induces human β-cell proliferation. Nat Commun 6:8372. https://doi.org/10.1038/ncomms9372

    Article  CAS  PubMed  Google Scholar 

  48. Domínguez RO, Pagano MA, Marschoff ER, González SE, Repetto MG, Serra JA (2014) Alzheimer disease and cognitive impairment associated with diabetes mellitus type 2: associations and a hypothesis. Neurologia 29(9):567–572. https://doi.org/10.1016/j.nrl.2013.05.006

    Article  PubMed  Google Scholar 

  49. Li DW, Liu ZQ, Chen W, Yao M, Li GR (2014) Association of glycogen synthase kinase-3β with Parkinson’s disease (review). Mol Med Rep 9(6):2043–2050. https://doi.org/10.3892/mmr.2014.2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Khallaghi B, Safarian F, Nasoohi S, Ahmadiani A, Dargahi L (2016) Metformin-induced protection against oxidative stress is associated with AKT/mTOR restoration in PC12 cells. Life Sci 148:286–292. https://doi.org/10.1016/j.lfs.2016.02.024

    Article  CAS  PubMed  Google Scholar 

  51. Ouslimani N, Peynet J, Bonnefont-Rousselot D, Thérond P, Legrand A, Beaudeux JL (2005) Metformin decreases intracellular production of reactive oxygen species in aortic endothelial cells. Metabolism 54(6):829–834. https://doi.org/10.1016/j.metabol.2005.01.029

  52. Zhao RR, Xu XC, Xu F, Zhang WL, Zhang WL, Liu LM, Wang WP (2014) Metformin protects against seizures, learning and memory impairments and oxidative damage induced by pentylenetetrazole-induced kindling in mice. Biochem Biophys Res Commun 448(4):414–417. https://doi.org/10.1016/j.bbrc.2014.04.130

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Istanbul University Scientific Research Projects. Project No: 27509.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed significantly to this research.

Conceived and designed the experiments and wrote the manuscript: AO, GS. Performed the experiments and analyzed the data: AO, KYO, KY, MM, MA, AC, BOK, OFS, UC, HU, GS. The corresponding author: AO. All authors have been involved in the drafting, critical revision, and final approval of the manuscript for publication. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Aykut Oruc.

Ethics declarations

Ethics Approval

Ethical approval was obtained for the project from Istanbul University Animal Experiments Local Ethics Committee with the number 35980450–050.99. Guide for the Care and Use of Laboratory Animals of National Academy of Sciences was followed for caring animals during the experiment.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oruc, A., Oruc, K.Y., Yanar, K. et al. The Role of Glycogen Synthase Kinase-3β in the Zinc-Mediated Neuroprotective Effect of Metformin in Rats with Glutamate Neurotoxicity. Biol Trace Elem Res 202, 233–245 (2024). https://doi.org/10.1007/s12011-023-03667-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03667-3

Keywords

Navigation