Skip to main content

Advertisement

Log in

Methods for the Preparation of Silica and Its Nanoparticles from Different Natural Sources

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Silica (SiO2), a component of the earth’s crust, has been in use for many nanotechnological applications. This review presents one of the newest methods for safer, more affordable, and more ecologically friendly production of silica and its nanoparticles from the ashes of agricultural wastes. The production of SiO2 nanoparticles (SiO2NPs) from different agricultural wastes, including rice husk, rice straw, maize cobs, and bagasse, was systematically and critically discussed. The review also emphasizes current issues and possibilities linked with contemporary technology to raise awareness and stimulate scholars’ insight. Furthermore, the processes involved in isolating silica from agricultural wastes were explored in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data are available in the manuscript.

References

  1. Londeree DJ (2002) Silica-titania composites for water treatment. A master thesis of engineering University of Florida.

  2. Eddy DR, Puri FN, Noviyanti AR (2015) Synthesis and photocatalytic activity of silica-based sand quartz as the supporting TiO2 photocatalyst. Procedia Chem 17:55–58

    Article  CAS  Google Scholar 

  3. Cheng Y, Luo F, Jiang Y et al (2018) The effect of calcination temperature on the structure and activity of TiO2/SiO2 composite catalysts derived from titanium sulfate and fly ash acid sludge. Colloids Surf A 554:81–85

    Article  CAS  Google Scholar 

  4. Todkar BS, Deorukhkar OA, Deshmukh SM (2016) Extraction of silica from rice husk. Int J Eng Res Dev 12:69–74

    Google Scholar 

  5. Schüth F, Sing KSW, Weitkamp J (2002) Handbook of porous solids. Wiley-VCH

    Book  Google Scholar 

  6. Nakashima H, Omae K, Takebayashi T et al (1998) Toxicity of silicon compounds in semiconductor industries. J Occup Health 40:270–275

    Article  CAS  Google Scholar 

  7. Wagh PB, Begag R, Pajonk GM et al (1999) Comparison of some physical properties of silica aerogel monoliths synthesized by different precursors. Mater Chem Phys 57:214–218

    Article  CAS  Google Scholar 

  8. Zulfiqar U, Subhani T, Husain SW (2015) Towards tunable size of silica particles from rice husk. J Non-Cryst Solids 429:61–69

    Article  CAS  Google Scholar 

  9. Bageru AB, Srivastava VC (2018) Biosilica preparation from abundantly available African biomass Teff (Eragrostis tef) straw ash by sol-gel method and its characterization. Biomass Convers Biorefinery 8:971–978

    Article  CAS  Google Scholar 

  10. Fadhlulloh MA, Rahman T, Nandiyanto ABD, Mudzakir A (2014) Review tentang sintesis SiO2 nanopartikel. Jurnal Integrasi Proses 5:30–45

    Google Scholar 

  11. Soltani N, Bahrami A, Pech-Canul MI, González LA (2015) Review on the physicochemical treatments of rice husk for production of advanced materials. Chem Eng J 264:899–935

    Article  CAS  Google Scholar 

  12. Bakar RA, Yahya R, Gan SN (2016) Production of high purity amorphous silica from rice husk. Procedia Chem 19:189–195

    Article  Google Scholar 

  13. Anuar MF, Fen YW, Zaid MHM et al (2018) Synthesis and structural properties of coconut husk as potential silica source. Results Phys 11:1–4

    Article  Google Scholar 

  14. Espíndola-Gonzalez A, Martínez-Hernández AL, Angeles-Chávez C et al (2010) Novel crystalline SiO2 nanoparticles via annelids bioprocessing of agro-industrial wastes. Nanoscale Res Lett 5:1408–1417

    Article  PubMed  PubMed Central  Google Scholar 

  15. Naqvi J, Shah FH, Mansha M (2011) Extraction of amorphous silica from wheat husk by using KMnO4. J Fac Eng Technol 18:39–46

    Google Scholar 

  16. Mohanraj K, Kannan S, Barathan S, Sivakumar G (2012) Preparation and characterization of nano SiO2 from corn cob ash by precipitation method. Optoelectron Adv Mater-Rapid Commun 6:394–397

    CAS  Google Scholar 

  17. Okoronkwo EA, Imoisili PE, Olusunle SOO (2013) Extraction and characterization of amorphous silica from corn cob ash by sol-gel method. Chem Mater Res 3:68–72

    Google Scholar 

  18. Fardhyanti DS, Putri RDA, Fianti O, et al (2018) Synthesis of silica powder from sugar cane bagasse ash and its application as adsorbent in adsorptive-distillation of ethanol-water solution. In: MATEC web of conferences. EDP Sciences, p 2002

  19. Norsuraya S, Fazlena H, Norhasyimi R (2016) Sugarcane bagasse as a renewable source of silica to synthesize Santa Barbara Amorphous-15 (SBA-15). Procedia Eng 148:839–846

    Article  CAS  Google Scholar 

  20. Menon VC, Komarneni S (1998) Porous adsorbents for vehicular natural gas storage: a review. J Porous Mater 5:43–58

    Article  CAS  Google Scholar 

  21. Zulfiqar U, Subhani T, Wilayat Husain S (2016) Synthesis of silica nanoparticles from sodium silicate under alkaline conditions. J Sol-Gel Sci Technol 77:753–758

    Article  CAS  Google Scholar 

  22. Li D, Zhu X (2011) Short-period synthesis of high specific surface area silica from rice husk char. Mater Lett 65:1528–1530

    Article  CAS  Google Scholar 

  23. Ding Y, Su D (2012) Purifying native in-situ mastoid SiO2 from rice husk. Energy procedia 16:1269–1274

    Article  CAS  Google Scholar 

  24. Wattanasiriwech S, Wattanasiriwech D, Svasti J (2010) Production of amorphous silica nanoparticles from rice straw with microbial hydrolysis pretreatment. J Non-Cryst Solids 356:1228–1232

    Article  CAS  Google Scholar 

  25. Ludueña LN, Vecchio A, Stefani PM, Alvarez VA (2013) Extraction of cellulose nanowhiskers from natural fibers and agricultural byproducts. Fibers Polym 14:1118–1127

    Article  Google Scholar 

  26. Marin DC, Vecchio A, Ludueña LN et al (2015) Revalorization of rice husk waste as a source of cellulose and silica. Fibers Polym 16:285–293

    Article  CAS  Google Scholar 

  27. Yalcin N, Sevinc V (2001) Studies on silica obtained from rice husk. Ceram Int 27:219–224

    Article  CAS  Google Scholar 

  28. Chakraverty A, Mishra P, Banerjee HD (1988) Investigation of combustion of raw and acid-leached rice husk for production of pure amorphous white silica. J Mater Sci 23:21–24

    Article  CAS  Google Scholar 

  29. Della VP, Kühn I, Hotza D (2002) Rice husk ash as an alternate source for active silica production. Mater Lett 57:818–821

    Article  CAS  Google Scholar 

  30. Chakraverty A, Kaleemullah S (1991) Conversion of rice husk into amorphous silica and combustible gas. Energy Convers Manage 32:565–570

    Article  CAS  Google Scholar 

  31. James J, Rao MS (1986) Reactivity of rice husk ash. Cem Concr Res 16:296–302

    Article  CAS  Google Scholar 

  32. Lee T, Othman R, Yeoh F-Y (2013) Development of photoluminescent glass derived from rice husk. Biomass Bioenerg 59:380–392

    Article  CAS  Google Scholar 

  33. Ruangtaweep Y, Kaewkhao J, Kedkaew C, Limsuwan P (2011) Investigation of biomass fly ash in Thailand for recycle to glass production. Procedia Eng 8:58–61

    Article  Google Scholar 

  34. Noushad M, Ab Rahman I, Zulkifli NSC et al (2014) Low surface area nanosilica from an agricultural biomass for fabrication of dental nanocomposites. Ceram Int 40:4163–4171

    Article  CAS  Google Scholar 

  35. Daifullah AAM, Girgis BS, Gad HMH (2003) Utilization of agro-residues (rice husk) in small waste water treatment plans. Mater Lett 57:1723–1731

    Article  CAS  Google Scholar 

  36. Hosseini MM, Shao Y, Whalen JK (2011) Biocement production from silicon-rich plant residues: perspectives and future potential in Canada. Biosys Eng 110:351–362

    Article  Google Scholar 

  37. Hao L, Gong X, Xuan S et al (2006) Controllable fabrication and characterization of biocompatible core-shell particles and hollow capsules as drug carrier. Appl Surf Sci 252:8724–8733

    Article  CAS  Google Scholar 

  38. Gallis KW, Araujo JT, Duff KJ et al (1999) The use of mesoporous silica in liquid chromatography. Adv Mater 11:1452–1455

    Article  CAS  Google Scholar 

  39. Yeganeh M, Omidi M, Rabizadeh T (2019) Anti-corrosion behavior of epoxy composite coatings containing molybdate-loaded mesoporous silica. Prog Org Coat 126:18–27

    Article  CAS  Google Scholar 

  40. Sun L, Gong K (2001) Silicon-based materials from rice husks and their applications. Ind Eng Chem Res 40:5861–5877

    Article  CAS  Google Scholar 

  41. Tomozawa M, Kim D-L, Lou V (2001) Preparation of high purity, low water content fused silica glass. J Non-Cryst Solids 296:102–106

    Article  CAS  Google Scholar 

  42. Tanner PA, Yan B, Zhang H (2000) Preparation and luminescence properties of sol-gel hybrid materials incorporated with europium complexes. J Mater Sci 35:4325–4328

    Article  CAS  Google Scholar 

  43. Wu G, Wang J, Shen J et al (2000) Properties of sol–gel derived scratch-resistant nano-porous silica films by a mixed atmosphere treatment. J Non-Cryst Solids 275:169–174

    Article  CAS  Google Scholar 

  44. Arivalagan K, Ravichandran S, Rangasamy K, Karthikeyan E (2011) Nanomaterials and its potential applications. Int J ChemTech Res 3:534–538

    Google Scholar 

  45. Pokropivny V, Lohmus R, Hussainova I et al (2007) Introduction to nanomaterials and nanotechnology. Tartu University Press Ukraine

    Google Scholar 

  46. Estevez M, Vargas S, Castano VM, Rodriguez R (2009) Silica nano-particles produced by worms through a bio-digestion process of rice husk. J Non-Cryst Solids 355:844–850

    Article  CAS  Google Scholar 

  47. Nadrah P, Planinšek O, Gaberšček M (2014) Stimulus-responsive mesoporous silica particles. J Mater Sci 49:481–495

    Article  CAS  Google Scholar 

  48. Wetzel ED, Lee YS, Egres RG, et al (2004) The effect of rheological parameters on the ballistic properties of shear thickening fluid (STF)‐kevlar composites. In: AIP conference proceedings. American Institute of Physics, pp 288–293

  49. Ismail A, Akbar Alamsyah I, Kholil M, et al (2018) The effect of milling time on the size of silica particles from silica sand. In: Materials Science Forum. Trans Tech Publ, pp 162–166

  50. Adam F, Ahmed AE, Min SL (2008) Silver modified porous silica from rice husk and its catalytic potential. J Porous Mater 15:433–444

    Article  CAS  Google Scholar 

  51. Adam F, Chew T-S, Andas J (2011) A simple template-free sol–gel synthesis of spherical nanosilica from agricultural biomass. J Sol-Gel Sci Technol 59:580–583

    Article  CAS  Google Scholar 

  52. Ang TN, Ngoh GC, Chua ASM (2013) Comparative study of various pretreatment reagents on rice husk and structural changes assessment of the optimized pretreated rice husk. Biores Technol 135:116–119

    Article  CAS  Google Scholar 

  53. Zulkifli NSC, Ab Rahman I, Mohamad D, Husein A (2013) A green sol–gel route for the synthesis of structurally controlled silica particles from rice husk for dental composite filler. Ceram Int 39:4559–4567

    Article  CAS  Google Scholar 

  54. Gu S, Zhou J, Luo Z et al (2013) A detailed study of the effects of pyrolysis temperature and feedstock particle size on the preparation of nanosilica from rice husk. Ind Crops Prod 50:540–549

    Article  CAS  Google Scholar 

  55. Kongmanklang C, Rangsriwatananon K (2015) Hydrothermal synthesis of high crystalline silicalite from rice husk ash. J Spectrosc 2015: 1–5. https://doi.org/10.1155/2015/696513

  56. Kumar A, Singha S, Dasgupta D et al (2015) Simultaneous recovery of silica and treatment of rice mill wastewater using rice husk ash: an economic approach. Ecol Eng 84:29–37

    Article  Google Scholar 

  57. Vaibhav V, Vijayalakshmi U, Roopan SM (2015) Agricultural waste as a source for the production of silica nanoparticles. Spectrochim Acta Part A: Mol Biomol Spectrosc 139:515–520

    Article  CAS  Google Scholar 

  58. Umeda J, Kondoh K (2008) Process optimization to prepare high-purity amorphous silica from rice husks via citric acid leaching treatment. Trans JWRI 37:13–17

    CAS  Google Scholar 

  59. Umeda J, Kondoh K (2010) High-purification of amorphous silica originated from rice husks by combination of polysaccharide hydrolysis and metallic impurities removal. Ind Crops Prod 32:539–544

    Article  CAS  Google Scholar 

  60. Umeda J, Imai H, Kondoh K (2009) Polysaccharide hydrolysis and metallic impurities removal behavior of rice husks in citric acid leaching treatment. Trans JWRI 38:13–18

    CAS  Google Scholar 

  61. Riveros H, Garza C (1986) Rice husks as a source of high purity silica. J Cryst Growth 75:126–131

    Article  CAS  Google Scholar 

  62. Conradt R, Pimkhaokham P, Leela-Adisorn U (1992) Nano-structured silica from rice husk. J Non-Cryst Solids 145:75–79

    Article  CAS  Google Scholar 

  63. Kalapathy U, Proctor A, Shultz J (2002) An improved method for production of silica from rice hull ash. Biores Technol 85:285–289

    Article  CAS  Google Scholar 

  64. Faizul CP, Abdullah C, Fazlul B (2013) Extraction of silica from palm ashvia citric acid leaching treatment. Adv Environ Biol 7:3690–3695

    Google Scholar 

  65. Kumar S, Sangwan P, Dhankhar RMV, Bidra S (2013) Utilization of rice husk and their ash: a review. Res J Chem Env Sci 1:126–129

    CAS  Google Scholar 

  66. Rungrodnimitchai S, Phokhanusai W, Sungkhaho N (2009) Preparation of silica gel from rice husk ash using microwave heating. J Met Mater Minerals 19:45–50

    CAS  Google Scholar 

  67. Handayani PA, Eko N, Wara DPR (2015) Utilization of rice husk into silica gel. JBAT 4:18–24

    Google Scholar 

  68. Ikram N, Akhter M (1988) X-ray diffraction analysis of silicon prepared from rice husk ash. J Mater Sci 23:2379–2381

    Article  CAS  Google Scholar 

  69. Haq IU, Akhtar K, Malik A (2014) Effect of experimental variables on the extraction of silica from the rice husk ash. J Chem Soc Pak 36:382

    Google Scholar 

  70. Payá J, Monzó J, Borrachero MV et al (2001) Determination of amorphous silica in rice husk ash by a rapid analytical method. Cem Concr Res 31:227–231

    Article  Google Scholar 

  71. Hunt LP, Dismukes JP, Amick JA et al (1984) Rice hulls as a raw material for producing silicon. J Electrochem Soc 131:1683

    Article  CAS  Google Scholar 

  72. Luan TC, Chou TC (1990) Recovery of silica from the gasification of rice husks/coal in the presence of a pilot flame in a modified fluidized bed. Ind Eng Chem Res 29:1922–1927

    Article  CAS  Google Scholar 

  73. Real C, Alcala MD, Criado JM (1996) Preparation of silica from rice husks. J Am Ceram Soc 79:2012–2016

    Article  CAS  Google Scholar 

  74. Rovani S, Santos JJ, Corio P, Fungaro DA (2018) Highly pure silica nanoparticles with high adsorption capacity obtained from sugarcane waste ash. ACS Omega 3:2618–2627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kauldhar BS, Yadav SK (2018) Turning waste to wealth: a direct process for recovery of nano-silica and lignin from paddy straw agro-waste. J Clean Prod 194:158–166

    Article  CAS  Google Scholar 

  76. Emamian SA, Eskandari-Naddaf H (2019) Effect of porosity on predicting compressive and flexural strength of cement mortar containing micro and nano-silica by ANN and GEP. Constr Build Mater 218:8–27

    Article  CAS  Google Scholar 

  77. Assefi M, Davar F, Hadadzadeh H (2015) Green synthesis of nanosilica by thermal decomposition of pine cones and pine needles. Adv Powder Technol 26:1583–1589

    Article  CAS  Google Scholar 

  78. Ibrahim IAM, Zikry AAF, Sharaf MA (2010) Preparation of spherical silica nanoparticles: Stober silica. J Am Sci 6:985–989

    Google Scholar 

  79. Mor S, Manchanda CK, Kansal SK, Ravindra K (2017) Nanosilica extraction from processed agricultural residue using green technology. J Clean Prod 143:1284–1290

    Article  CAS  Google Scholar 

  80. Adebisi JA, Agunsoye JO, Bello SA et al (2017) Potential of producing solar grade silicon nanoparticles from selected agro-wastes: a review. Sol Energy 142:68–86

    Article  CAS  Google Scholar 

  81. Batchelor L, Loni A, Canham LT et al (2012) Manufacture of mesoporous silicon from living plants and agricultural waste: an environmentally friendly and scalable process. Silicon 4:259–266

    Article  CAS  Google Scholar 

  82. Chanadee T, Chaiyarat S (2016) Preparation and characterization of low cost silica powder from sweet corn cobs (Zea mays saccharata L.). J Mater Environ Sci 7:2369–2374

    CAS  Google Scholar 

  83. Chandrasekhar S, Satyanarayana KG, Pramada PN et al (2003) Review processing, properties and applications of reactive silica from rice husk—an overview. J Mater Sci 38:3159–3168

    Article  CAS  Google Scholar 

  84. Chandrasekhar S, Pramada PN, Majeed J (2006) Effect of calcination temperature and heating rate on the optical properties and reactivity of rice husk ash. J Mater Sci 41:7926–7933

    Article  CAS  Google Scholar 

  85. Chandrasekhar S, Pramada PN, Praveen L (2005) Effect of organic acid treatment on the properties of rice husk silica. J Mater Sci 40:6535–6544

    Article  CAS  Google Scholar 

  86. Adebisi JA, Agunsoye JO, Bello SA et al (2018) Extraction of silica from cassava periderm using modified sol-gel method. Nigerian J Technol Dev 15:57–65

    Article  Google Scholar 

  87. Usman AM, Raji A, Waziri NH, Hassan MA (2014) A study on silica and alumina potential of the savannah bagasse ash. IOSR J Mech Civil Eng 11:48–52

    Article  Google Scholar 

  88. Mehta PK (1979) The chemistry and technology of cements rice husk ash made from rice husk ash. In: Proc. UNIDO/Escap Workshop on Rice Husk Ash Cement, Peshawar, Pakistan, 1979

  89. Ma X, Zhou B, Gao W et al (2012) A recyclable method for production of pure silica from rice hull ash. Powder Technol 217:497–501

    Article  CAS  Google Scholar 

  90. Fernandes A de A (2006) Síntese de zeólitas e wolastonita a partir da cinza da casca do arroz (Doctoral dissertation, Universidade de São Paulo)

  91. Liou T-H, Yang C-C (2011) Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash. Mater Sci Eng, B 176:521–529

    Article  CAS  Google Scholar 

  92. Bergna HE, Roberts WO (2005) Colloidal silica: fundamentals and applications. CRC Press

    Book  Google Scholar 

  93. Kalapathy U, Proctor A, Shultz J (2000) A simple method for production of pure silica from rice hull ash. Biores Technol 73:257–262

    Article  CAS  Google Scholar 

  94. Liou T-H (2004) Preparation and characterization of nano-structured silica from rice husk. Mater Sci Eng A 364:313–323

    Article  Google Scholar 

  95. Patel BH, Patel PN (2014) Synthesis and characterization of silica nano-particles by acid leaching technique. Res J Chem Sci 4:52–55

    CAS  Google Scholar 

  96. Chen H, Wang F, Zhang C et al (2010) Preparation of nano-silica materials: the concept from wheat straw. J Non-Cryst Solids 356:2781–2785

    Article  CAS  Google Scholar 

  97. Sivasubramanian S, Sravanthi K (2015) Synthesis and characterization of silica nano particles from coconut shell. Int J Pharm Bio Sci 6:530–536

    CAS  Google Scholar 

  98. Zaky RR, Hessien MM, El-Midany AA et al (2008) Preparation of silica nanoparticles from semi-burned rice straw ash. Powder Technol 185:31–35

    Article  CAS  Google Scholar 

  99. Li D, Chen D, Zhu X (2011) Reduction in time required for synthesis of high specific surface area silica from pyrolyzed rice husk by precipitation at low pH. Biores Technol 102:7001–7003

    Article  CAS  Google Scholar 

  100. Hariharan V, Sivakumar AG (2013) Studies on synthesized nanosilica obtained from bagasse ash. Int J Chem Tech Res 5:1263–1266

    CAS  Google Scholar 

  101. Singh LP, Agarwal SK, Bhattacharyya SK et al (2011) Preparation of silica nanoparticles and its beneficial role in cementitious materials. Nanomater Nanotechnol 1:44–51

    Article  CAS  Google Scholar 

  102. Selvakumar KV, Umesh A, Ezhilkumar P et al (2014) Extraction of silica from burnt paddy husk. Int J ChemTech Res 6:4455–4459

    CAS  Google Scholar 

  103. Awizar DA, Othman NK, Jalar A et al (2013) Nanosilicate extraction from rice husk ash as green corrosion inhibitor. Int J Electrochem Sci 8:1759–1769

    Article  CAS  Google Scholar 

  104. Le VH, Thuc CNH, Thuc HH (2013) Synthesis of silica nanoparticles from Vietnamese rice husk by sol–gel method. Nanoscale Res Lett 8:1–10

    Article  Google Scholar 

  105. Sheng L, Zhang Y, Tang F, Liu S (2018) Mesoporous/microporous silica materials: preparation from natural sands and highly efficient fixed-bed adsorption of methylene blue in wastewater. Microporous Mesoporous Mater 257:9–18

    Article  CAS  Google Scholar 

  106. Jamwal HS, Kumari S, Chauhan GS et al (2017) Silica-polymer hybrid materials as methylene blue adsorbents. J Environ Chem Eng 5:103–113

    Article  CAS  Google Scholar 

  107. Saini J, Garg VK, Gupta RK (2018) Removal of methylene blue from aqueous solution by Fe3O4@ Ag/SiO2 nanospheres: synthesis, characterization and adsorption performance. J Mol Liq 250:413–422

    Article  CAS  Google Scholar 

  108. Ono K, Erhard A (2011) Nondestructive testing, 3. Ultrasonics. https://doi.org/10.1002/14356007.o17_o02

    Article  Google Scholar 

  109. Fakoya MF, Shah SN (2017) Emergence of nanotechnology in the oil and gas industry: emphasis on the application of silica nanoparticles. Petroleum 3:391–405

    Article  Google Scholar 

  110. Bakandritsos A, Kadam RG, Kumar P et al (2019) Single-atom catalysis: mixed-valence single-atom catalyst derived from functionalized graphene (Adv. Mater. 17/2019). Adv Mater 31:1970125

    Article  Google Scholar 

  111. Nandan D, Zoppellaro G, Medřík I et al (2018) Cobalt-entrenched N-, O-, and S-tridoped carbons as efficient multifunctional sustainable catalysts for base-free selective oxidative esterification of alcohols. Green Chem 20:3542–3556

    Article  CAS  Google Scholar 

  112. Sharma RK, Dutta S, Sharma S et al (2016) Fe 3 O 4 (iron oxide)-supported nanocatalysts: synthesis, characterization and applications in coupling reactions. Green Chem 18:3184–3209

    Article  CAS  Google Scholar 

  113. Gawande MB, Goswami A, Felpin F-X et al (2016) Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 116:3722–3811

    Article  CAS  PubMed  Google Scholar 

  114. Murugesan K, Beller M, Jagadeesh RV (2019) Reusable nickel nanoparticles-catalyzed reductive amination for selective synthesis of primary amines. Angew Chem 131:5118–5122

    Article  Google Scholar 

  115. Li W, Cui X, Junge K et al (2019) General and chemoselective copper oxide catalysts for hydrogenation reactions. ACS Catal 9:4302–4307

    Article  CAS  Google Scholar 

  116. Sordakis K, Tang C, Vogt LK et al (2018) Homogeneous catalysis for sustainable hydrogen storage in formic acid and alcohols. Chem Rev 118:372–433

    Article  CAS  PubMed  Google Scholar 

  117. Hayler JD, Leahy DK, Simmons EM (2018) A pharmaceutical industry perspective on sustainable metal catalysis. Organometallics 38:36–46

    Article  Google Scholar 

  118. Solel E, Tarannam N, Kozuch S (2019) Catalysis: energy is the measure of all things. Chem Commun 55:5306–5322

    Article  CAS  Google Scholar 

  119. Vallet-Regí M, Balas F (2008) Silica materials for medical applications. Open Biomed Eng J 2:1

    Article  PubMed  PubMed Central  Google Scholar 

  120. Singh SP, Endley N (2020) Fabrication of nano-silica from agricultural residue and their application. In: Nanomaterials for Agriculture and Forestry Applications. Elsevier, pp 107–134

  121. Tripathi DK, Singh VP, Kumar D, Chauhan DK (2012) Impact of exogenous silicon addition on chromium uptake, growth, mineral elements, oxidative stress, antioxidant capacity, and leaf and root structures in rice seedlings exposed to hexavalent chromium. Acta Physiol Plant 34:279–289

    Article  CAS  Google Scholar 

  122. Cui J, Liu T, Li F et al (2017) Silica nanoparticles alleviate cadmium toxicity in rice cells: mechanisms and size effects. Environ Pollut 228:363–369

    Article  CAS  PubMed  Google Scholar 

  123. Abdel-Haliem MEF, Hegazy HS, Hassan NS, Naguib DM (2017) Effect of silica ions and nano silica on rice plants under salinity stress. Ecol Eng 99:282–289

    Article  Google Scholar 

  124. Jullok N, Van Hooghten R, Luis P et al (2016) Effect of silica nanoparticles in mixed matrix membranes for pervaporation dehydration of acetic acid aqueous solution: Plant-inspired dewatering systems. J Clean Prod 112:4879–4889

    Article  CAS  Google Scholar 

  125. Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792

    Article  CAS  PubMed  Google Scholar 

  126. Rouhani M, Samih MA, Kalantari S (2013) Insecticidal effect of silica and silver nanoparticles on the cowpea seed beetle, Callosobruchus maculatus F.(Col.: Bruchidae)

  127. Ulrichs C, Mewis I, Goswami A (2005) Crop diversification aiming nutritional security in West Bengal: biotechnology of stinging capsules in nature’s water-blooms. Ann Tech Issue of State Agri Technologists Service Assoc 1–18

  128. Magda S, Hussein MM (2016) Determinations of the effect of using silica gel and nano-silica gel against Tutaabsoluta (Lepidoptera: Gelechiidae) in tomato fields. J Chem Pharm Res 8:506–512

    CAS  Google Scholar 

  129. El-Bendary HM, El-Helaly AA (2013) First record nanotechnology in agricultural: silica nano-particles a potential new insecticide for pest control. App Sci Report 4:241–246

    Google Scholar 

  130. Ziaee M, Ganji Z (2016) Insecticidal efficacy of silica nanoparticles against Rhyzopertha dominica F. and Tribolium confusum Jacquelin du Val. J Plant Protect Res 56:250–256

    Article  CAS  Google Scholar 

  131. Janmohammadi M, Amanzadeh T, Sabaghnia N, Ion V (2016) Effect of nano-silicon foliar application on safflower growth under organic and inorganic fertilizer regimes. Botanica Lithuanica 22:53–64

    Article  Google Scholar 

  132. Torney F, Trewyn BG, Lin VS-Y, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  PubMed  Google Scholar 

  133. Wanyika H, Gatebe E, Kioni P et al (2012) Mesoporous silica nanoparticles carrier for urea: potential applications in agrochemical delivery systems. J Nanosci Nanotechnol 12:2221–2228

    Article  CAS  PubMed  Google Scholar 

  134. Park S, Ko Y-S, Jung H et al (2018) Disinfection of waterborne viruses using silver nanoparticle-decorated silica hybrid composites in water environments. Sci Total Environ 625:477–485

    Article  CAS  PubMed  Google Scholar 

  135. Cho YK, Park EJ, Kim YD (2014) Removal of oil by gelation using hydrophobic silica nanoparticles. J Ind Eng Chem 20:1231–1235

    Article  CAS  Google Scholar 

  136. Kresge CT, Leonowicz ME, Roth WJ et al (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712

    Article  CAS  Google Scholar 

  137. Wang C, Lin X, Ge Y et al (2016) Silica-supported ultra small gold nanoparticles as nanoreactors for the etherification of silanes. RSC Adv 6:102102–102108

    Article  CAS  Google Scholar 

  138. Ciriminna R, Fidalgo A, Pandarus V et al (2013) The sol–gel route to advanced silica-based materials and recent applications. Chem Rev 113:6592–6620

    Article  CAS  PubMed  Google Scholar 

  139. Cha JN, Stucky GD, Morse DE, Deming TJ (2000) Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature 403:289–292

    Article  CAS  PubMed  Google Scholar 

  140. Yu C, Tian B, Fan J et al (2002) Nonionic block copolymer synthesis of large-pore cubic mesoporous single crystals by use of inorganic salts. J Am Chem Soc 124:4556–4557

    Article  CAS  PubMed  Google Scholar 

  141. Che S, Garcia-Bennett AE, Yokoi T et al (2003) A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure. Nat Mater 2:801–805

    Article  CAS  PubMed  Google Scholar 

  142. Yokoi T, Sakamoto Y, Terasaki O et al (2006) Periodic arrangement of silica nanospheres assisted by amino acids. J Am Chem Soc 128:13664–13665

    Article  CAS  PubMed  Google Scholar 

  143. Bathla A, Narula C, Chauhan RP (2018) Hydrothermal synthesis and characterization of silica nanowires using rice husk ash: an agricultural waste. J Mater Sci Mater Electron 29:6225–6231

    Article  CAS  Google Scholar 

  144. El-Sherif M (2017) Silica added value & application in solar cells manufacturing. J Egypt Soc Eng 56:30–37

    Google Scholar 

  145. Wang F, Mao C (2009) Nanotubes connected to a micro-tank: hybrid micro-/nano-silica architectures transcribed from living bacteria as bioreactors. Chem Commun 10: 1222–1224

  146. Siu C (2022) Semiconductor physics. In: Electronic Devices, Circuits, and Applications. Springer, pp 35–39

  147. Alejandro-Arellano M, Ung T, Blanco Á et al (2000) Silica-coated metals and semiconductors. Stabilization and nanostructuring. Pure Appl Chem 72:257–267

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the research laboratory LAIGM of Guelma University, Algeria.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: B.BN., H.H., B.M.E., Z.S., A.R., S.B, A.M., C.M., P.P., and M.M. Methodology: B.BN., M.S.R., C.G.A., I.B.A., and I.K., Software: B.BN., H.H., B.M.E., Z.S., M.S.R., C.G.A., I.B.A., I.K., A.R., S.B, A.M., C.M., P.P., and M.M. Validation: B.BN., H.H., and B.M.E. Formal analysis and investigation: B.BN., H.H., B.M.E., P.P., and M.M. Writing—original draft: B.BN. and H.H. Writing—review and editing: B.BN., H.H., B.M.E., Z.S., M.S.R., C.G.A., I.B.A., I.K., A.R., S.B, A.M., C.M., P.P., and M.M. Supervision: A.R. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Bachir Ben Seghir or Mohammed Messaoudi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

- Silica has distinct physiological properties in nanotechnology applications.

- Some novel methods for the formulation, safer, more affordable, and more ecologically friendly silica.

- Innovative methods for obtaining silica (SiO2) and its nanoparticles from the ashes of agricultural waste for use in nanotechnology.

- Processes involved in isolating silica from agricultural waste.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seghir, B.B., Hemmami, H., Hocine, B.M.E. et al. Methods for the Preparation of Silica and Its Nanoparticles from Different Natural Sources. Biol Trace Elem Res 201, 5871–5883 (2023). https://doi.org/10.1007/s12011-023-03628-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03628-w

Keywords

Navigation