Skip to main content
Log in

Zinc Improves Semen Parameters in High-Fat Diet-Induced Male Rats by Regulating the Expression of LncRNA in Testis Tissue

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study aimed to identify differentially expressed LncRNAs in testis tissue of male rats induced by high-fat diet and their changes after zinc supplementation, by constructing a high-fat feeding rat model, and then supplemented with zinc, and observed the expression of LncRNA in three groups of normal, high-fat fed, and zinc-intervened rats. Experimental studies show that the semen parameters of male rats with high-fat diet were decreased but recovered after zinc supplementation, and the related LncRNA also changed. Zinc may improve the high-fat diet-induced reduction of semen parameters by changing the expression of related LncRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Chen T, Yan D, Cheng X, Ji X, Bian J, Yin W (2018) miR-1224-5p enhances hepatic lipogenesis by targeting adenosine monophosphate-activated protein kinase alpha1 in male mice. Endocrinology 159:2008–2021. https://doi.org/10.1210/en.2017-03231

    Article  CAS  PubMed  Google Scholar 

  2. Chen XL, Gong LZ, Xu JX (2013) Antioxidative activity and protective effect of probiotics against high-fat diet-induced sperm damage in rats. Animal 7:287–292. https://doi.org/10.1017/S1751731112001528

    Article  CAS  PubMed  Google Scholar 

  3. Chen Y, Yang J, Wang Y, Yang M, Guo M (2020) Zinc deficiency promotes testicular cell apoptosis in mice. Biol Trace Elem Res 195:142–149. https://doi.org/10.1007/s12011-019-01821-4

    Article  CAS  PubMed  Google Scholar 

  4. Chi Y, Wu Z, Du C, Zhang M, Wang X, Xie A, Wang P, Li R (2023) Regulatory effects mediated by ulvan oligosaccharide and its zinc complex on lipid metabolism in high-fat diet-fed mice. Carbohydr Polym 300:120249. https://doi.org/10.1016/j.carbpol.2022.120249

    Article  CAS  PubMed  Google Scholar 

  5. de Gonzalo-Calvo D, van der Meer RW, Rijzewijk LJ, Smit JW, Revuelta-Lopez E, Nasarre L, Escola-Gil JC, Lamb HJ, Llorente-Cortes V (2017) Serum microRNA-1 and microRNA-133a levels reflect myocardial steatosis in uncomplicated type 2 diabetes. Sci Rep 7:47. https://doi.org/10.1038/s41598-017-00070-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. de Guia RM, Rose AJ, Sommerfeld A, Seibert O, Strzoda D, Zota A, Feuchter Y, Krones-Herzig A, Sijmonsma T, Kirilov M, Sticht C, Gretz N, Dallinga-Thie G, Diederichs S, Kloting N, Bluher M, Berriel DM, Herzig S (2015) microRNA-379 couples glucocorticoid hormones to dysfunctional lipid homeostasis. EMBO J 34:344–360. https://doi.org/10.15252/embj.201490464

    Article  CAS  PubMed  Google Scholar 

  7. Deguise MO, Baranello G, Mastella C, Beauvais A, Michaud J, Leone A, De Amicis R, Battezzati A, Dunham C, Selby K, Warman CJ, McMillan HJ, Huang YT, Courtney NL, Mole AJ, Kubinski S, Claus P, Murray LM, Bowerman M, Gillingwater TH, Bertoli S, Parson SH, Kothary R (2019) Abnormal fatty acid metabolism is a core component of spinal muscular atrophy. Ann Clin Transl Neurol 6:1519–1532. https://doi.org/10.1002/acn3.50855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dolganiuc A, Petrasek J, Kodys K, Catalano D, Mandrekar P, Velayudham A, Szabo G (2009) MicroRNA expression profile in Lieber-DeCarli diet-induced alcoholic and methionine choline deficient diet-induced nonalcoholic steatohepatitis models in mice. Alcohol Clin Exp Res 33:1704–1710. https://doi.org/10.1111/j.1530-0277.2009.01007.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Escate R, Padro T, Suades R, Camino S, Muniz O, Diaz-Diaz JL, Sionis A, Mata P, Badimon L (2021) High miR-133a levels in the circulation anticipates presentation of clinical events in familial hypercholesterolaemia patients. Cardiovasc Res 117:109–122. https://doi.org/10.1093/cvr/cvaa039

    Article  CAS  PubMed  Google Scholar 

  10. Fayard E, Auwerx J, Schoonjans K (2004) LRH-1: an orphan nuclear receptor involved in development, metabolism and steroidogenesis. Trends Cell Biol 14:250–260. https://doi.org/10.1016/j.tcb.2004.03.008

    Article  CAS  PubMed  Google Scholar 

  11. Fehrenschild D, Galli U, Breiden B, Bloch W, Schettina P, Brodesser S, Michels C, Gunschmann C, Sandhoff K, Niessen CM, Niemann C (2012) TCF/Lef1-mediated control of lipid metabolism regulates skin barrier function. J Invest Dermatol 132:337–345. https://doi.org/10.1038/jid.2011.301

    Article  CAS  PubMed  Google Scholar 

  12. Ferramosca A, Conte A, Moscatelli N, Zara V (2016) A high-fat diet negatively affects rat sperm mitochondrial respiration. Andrology 4:520–525. https://doi.org/10.1111/andr.12182

    Article  CAS  PubMed  Google Scholar 

  13. Goedeke L, Rotllan N, Canfran-Duque A, Aranda JF, Ramirez CM, Araldi E, Lin CS, Anderson NN, Wagschal A, de Cabo R, Horton JD, Lasuncion MA, Naar AM, Suarez Y, Fernandez-Hernando C (2015) MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat Med 21:1280–1289. https://doi.org/10.1038/nm.3949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hasenfuss SC, Bakiri L, Thomsen MK, Williams EG, Auwerx J, Wagner EF (2014) Regulation of steatohepatitis and PPARgamma signaling by distinct AP-1 dimers. Cell Metab 19:84–95. https://doi.org/10.1016/j.cmet.2013.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Horbelt T, Knebel B, Fahlbusch P, Barbosa D, de Wiza DH, Van de Velde F, Van Nieuwenhove Y, Lapauw B, Thoresen GH, Al-Hasani H, Muller-Wieland D, Ouwens DM, Kotzka J (2019) The adipokine sFRP4 induces insulin resistance and lipogenesis in the liver. Biochim Biophys Acta Mol Basis Dis 1865:2671–2684. https://doi.org/10.1016/j.bbadis.2019.07.008

    Article  CAS  PubMed  Google Scholar 

  16. Huang R, Li J, Liao M, Ma L, Laurent I, Lin X, Zhang Y, Gao R, Ding Y, Xiao X (2022) Combinational exposure to bisphenol A and a high-fat diet causes trans-generational malfunction of the female reproductive system in mice. Mol Cell Endocrinol 541:111507. https://doi.org/10.1016/j.mce.2021.111507

    Article  CAS  PubMed  Google Scholar 

  17. Jiang H, Zhang J, Du Y, Jia X, Yang F, Si S, Wang L, Hong B (2015) microRNA-185 modulates low density lipoprotein receptor expression as a key posttranscriptional regulator. Atherosclerosis 243:523–532. https://doi.org/10.1016/j.atherosclerosis.2015.10.026

    Article  CAS  PubMed  Google Scholar 

  18. Joshi S, Nair N, Bedwal RS (2014) Dietary zinc deficiency effects dorso-lateral and ventral prostate of Wistar rats: histological, biochemical and trace element study. Biol Trace Elem Res 161:91–100. https://doi.org/10.1007/s12011-014-0053-1

    Article  CAS  PubMed  Google Scholar 

  19. Kakino S, Ohki T, Nakayama H, Yuan X, Otabe S, Hashinaga T, Wada N, Kurita Y, Tanaka K, Hara K, Soejima E, Tajiri Y, Yamada K (2018) Pivotal role of TNF-alpha in the development and progression of nonalcoholic fatty liver disease in a murine model. Horm Metab Res 50:80–87. https://doi.org/10.1055/s-0043-118666

    Article  CAS  PubMed  Google Scholar 

  20. Keller M, Schleinitz D, Forster J, Tonjes A, Bottcher Y, Fischer-Rosinsky A, Breitfeld J, Weidle K, Rayner NW, Burkhardt R, Enigk B, Muller I, Halbritter J, Koriath M, Pfeiffer A, Krohn K, Groop L, Spranger J, Stumvoll M, Kovacs P (2013) THOC5: a novel gene involved in HDL-cholesterol metabolism. J Lipid Res 54:3170–3176. https://doi.org/10.1194/jlr.M039420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kerr GE, Young JC, Horvay K, Abud HE, Loveland KL (2014) Regulated Wnt/beta-catenin signaling sustains adult spermatogenesis in mice. Biol Reprod 90:3. https://doi.org/10.1095/biolreprod.112.105809

    Article  CAS  PubMed  Google Scholar 

  22. Kim S, Park JW, Lee MG, Nam KH, Park JH, Oh H, Lee J, Han J, Yi SA, Han JW (2019) Reversine promotes browning of white adipocytes by suppressing miR-133a. J Cell Physiol 234:3800–3813. https://doi.org/10.1002/jcp.27148

    Article  CAS  PubMed  Google Scholar 

  23. Lee YJ, Han DH, Pak YK, Cho SH (2012) Circadian regulation of low density lipoprotein receptor promoter activity by CLOCK/BMAL1, Hes1 and Hes6. Exp Mol Med 44:642–652. https://doi.org/10.3858/emm.2012.44.11.073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li Y, Ma Z, Jiang S, Hu W, Li T, Di S, Wang D, Yang Y (2017) A global perspective on FOXO1 in lipid metabolism and lipid-related diseases. Prog Lipid Res 66:42–49. https://doi.org/10.1016/j.plipres.2017.04.002

    Article  CAS  PubMed  Google Scholar 

  25. Li Y, Xu Y, Jadhav K, Zhu Y, Yin L, Zhang Y (2019) Hepatic forkhead box protein A3 regulates ApoA-I (Apolipoprotein A-I) Expression, cholesterol efflux, and atherogenesis. Arterioscler Thromb Vasc Biol 39:1574–1587. https://doi.org/10.1161/ATVBAHA.119.312610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu D, Zhang M, Xie W, Lan G, Cheng HP, Gong D, Huang C, Lv YC, Yao F, Tan YL, Li L, Zheng XL, Tang CK (2016) MiR-486 regulates cholesterol efflux by targeting HAT1. Biochem Biophys Res Commun 472:418–424. https://doi.org/10.1016/j.bbrc.2015.11.128

    Article  CAS  PubMed  Google Scholar 

  27. Long Z, Cao M, Su S, Wu G, Meng F, Wu H, Liu J, Yu W, Atabai K, Wang X (2017) Inhibition of hepatocyte nuclear factor 1b induces hepatic steatosis through DPP4/NOX1-mediated regulation of superoxide. Free Radic Biol Med 113:71–83. https://doi.org/10.1016/j.freeradbiomed.2017.09.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lv ZM, Ling MY, Chen C (2020) Comparative proteomics reveals protective effect of resveratrol on a high-fat diet-induced damage to mice testis. Syst Biol Reprod Med 66:37–49. https://doi.org/10.1080/19396368.2019.1701138

    Article  CAS  PubMed  Google Scholar 

  29. Ma J, Han R, Li Y, Cui T, Wang S (2020) The mechanism of zinc sulfate in improving fertility in obese rats analyzed by sperm proteomic analysis. Biomed Res Int 2020:9876363. https://doi.org/10.1155/2020/9876363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mikkonen L, Hirvonen J, Janne OA (2013) SUMO-1 regulates body weight and adipogenesis via PPARgamma in male and female mice. Endocrinology 154:698–708. https://doi.org/10.1210/en.2012-1846

    Article  CAS  PubMed  Google Scholar 

  31. Niculescu LS, Simionescu N, Fuior EV, Stancu CS, Carnuta MG, Dulceanu MD, Raileanu M, Dragan E, Sima AV (2018) Inhibition of miR-486 and miR-92a decreases liver and plasma cholesterol levels by modulating lipid-related genes in hyperlipidemic hamsters. Mol Biol Rep 45:497–509. https://doi.org/10.1007/s11033-018-4186-8

    Article  CAS  PubMed  Google Scholar 

  32. Nie H, Song C, Wang D, Cui S, Ren T, Cao Z, Liu Q, Chen Z, Chen X, Zhou Y (2017) MicroRNA-194 inhibition improves dietary-induced non-alcoholic fatty liver disease in mice through targeting on FXR. Biochim Biophys Acta Mol Basis Dis 1863:3087–3094. https://doi.org/10.1016/j.bbadis.2017.09.020

    Article  CAS  PubMed  Google Scholar 

  33. Norouzi S, Adulcikas J, Sohal SS, Myers S (2017) Zinc transporters and insulin resistance: therapeutic implications for type 2 diabetes and metabolic disease. J Biomed Sci 24:87. https://doi.org/10.1186/s12929-017-0394-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Omu AE, Al-Azemi MK, Al-Maghrebi M, Mathew CT, Omu FE, Kehinde EO, Anim JT, Oriowo MA, Memon A (2015) Molecular basis for the effects of zinc deficiency on spermatogenesis: an experimental study in the Sprague-dawley rat model. Indian J Urol 31:57–64. https://doi.org/10.4103/0970-1591.139570

    Article  PubMed  PubMed Central  Google Scholar 

  35. Osadchuk LV, Danilenko AD, Osadchuk AV (2022) A relationship between zinc and anthropometric and metabolic indicators of obesity in the population of young Russian men. Biomed Khim 68:383–389. https://doi.org/10.18097/PBMC20226805383

    Article  CAS  PubMed  Google Scholar 

  36. Pinent M, Prokesch A, Hackl H, Voshol PJ, Klatzer A, Walenta E, Panzenboeck U, Kenner L, Trajanoski Z, Hoefler G, Bogner-Strauss JG (2011) Adipose triglyceride lipase and hormone-sensitive lipase are involved in fat loss in JunB-deficient mice. Endocrinology 152:2678–2689. https://doi.org/10.1210/en.2010-1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qi X, Zhang M, Sun M, Luo D, Guan Q, Yu C (2022) Restoring impaired fertility through diet: observations of switching from high-fat diet during puberty to normal diet in adulthood among obese male mice. Front Endocrinol (Lausanne) 13:839034. https://doi.org/10.3389/fendo.2022.839034

    Article  PubMed  Google Scholar 

  38. Reusch JE, Colton LA, Klemm DJ (2000) CREB activation induces adipogenesis in 3T3-L1 cells. Mol Cell Biol 20:1008–1020. https://doi.org/10.1128/MCB.20.3.1008-1020.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rospond B, Krakowska A, Krosniak M, Muszynska B, Opoka W (2022) The influence of high-fat and high-sucrose feeding regimes on organ weight, body weight, and serum concentration of bioelements in rats. J Trace Elem Med Biol 73:127020. https://doi.org/10.1016/j.jtemb.2022.127020

    Article  CAS  PubMed  Google Scholar 

  40. Saito K, Ishizaka N, Hara M, Matsuzaki G, Sata M, Mori I, Ohno M, Nagai R (2005) Lipid accumulation and transforming growth factor-beta upregulation in the kidneys of rats administered angiotensin II. Hypertension 46:1180–1185. https://doi.org/10.1161/01.HYP.0000184653.75036.d5

    Article  CAS  PubMed  Google Scholar 

  41. Satyanarayana A, Klarmann KD, Gavrilova O, Keller JR (2012) Ablation of the transcriptional regulator Id1 enhances energy expenditure, increases insulin sensitivity, and protects against age and diet induced insulin resistance, and hepatosteatosis. FASEB J 26:309–323. https://doi.org/10.1096/fj.11-190892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sharma NK, Varma V, Ma L, Hasstedt SJ, Das SK (2015) Obesity associated modulation of miRNA and co-regulated target transcripts in human adipose tissue of non-diabetic subjects. Microrna 4:194–204. https://doi.org/10.2174/2211536604666151103121817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shu L, Hou G, Zhao H, Huang W, Song G, Ma H (2020) Resveratrol improves high-fat diet-induced insulin resistance in mice by downregulating the lncRNA NONMMUT008655.2. Am J Transl Res 12:1–18

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Skovmand A, Erdely A, Antonini JM, Nurkiewicz TR, Shoeb M, Eye T, Kodali V, Loeschner K, Vidmar J, Agerholm JS, Goericke-Pesch S, Vogel U, Hougaard KS (2020) Inhalation of welding fumes reduced sperm counts and high fat diet reduced testosterone levels; differential effects in Sprague Dawley and Brown Norway rats. Part Fibre Toxicol 17:2. https://doi.org/10.1186/s12989-019-0334-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stepniowska A, Tutaj K, Juskiewicz J, Ognik K (2022) Effect of a high-fat diet and chromium on hormones level and Cr retention in rats. J Endocrinol Invest 45:527–535. https://doi.org/10.1007/s40618-021-01677-3

    Article  CAS  PubMed  Google Scholar 

  46. Wan X, Zhu X, Wang H, Feng Y, Zhou W, Liu P, Shen W, Zhang L, Liu L, Li T, Diao D, Yang F, Zhao Q, Chen L, Ren J, Yan S, Li J, Yu C, Ju Z (2020) PGC1alpha protects against hepatic steatosis and insulin resistance via enhancing IL10-mediated anti-inflammatory response. FASEB J 34:10751–10761. https://doi.org/10.1096/fj.201902476R

    Article  CAS  PubMed  Google Scholar 

  47. Wang L, Jia XJ, Jiang HJ, Du Y, Yang F, Si SY, Hong B (2013) MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition. Mol Cell Biol 33:1956–1964. https://doi.org/10.1128/MCB.01580-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang R, You YM, Liu X (2021) Effect of zanthoxylum alkylamides on lipid metabolism and its mechanism in rats fed with a high-fat diet. J Food Biochem 45:e13548. https://doi.org/10.1111/jfbc.13548

    Article  CAS  PubMed  Google Scholar 

  49. Wang X, Wu H, Yu W, Liu J, Peng J, Liao N, Zhang J, Zhang X, Hai C (2017) Hepatocyte nuclear factor 1b is a novel negative regulator of white adipocyte differentiation. Cell Death Differ 24:1588–1597. https://doi.org/10.1038/cdd.2017.85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu C, Fang S, Zhang H, Li X, Du Y, Zhang Y, Lin X, Wang L, Ma X, Xue Y, Guan M (2022) Long noncoding RNA XIST regulates brown preadipocytes differentiation and combats high-fat diet induced obesity by targeting C/EBPalpha. Mol Med 28:6. https://doi.org/10.1186/s10020-022-00434-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang A, Sun Y, Gao Y, Yang S, Mao C, Ding N, Deng M, Wang Y, Yang X, Jia Y, Zhang H, Jiang Y (2017) Reciprocal regulation between miR-148a/152 and DNA methyltransferase 1 is associated with hyperhomocysteinemia-accelerated atherosclerosis. DNA Cell Biol 36:462–474. https://doi.org/10.1089/dna.2017.3651

    Article  CAS  PubMed  Google Scholar 

  52. Yang A, Zhang H, Sun Y, Wang Y, Yang X, Yang X, Zhang H, Guo W, Zhu G, Tian J, Jia Y, Jiang Y (2016) Modulation of FABP4 hypomethylation by DNMT1 and its inverse interaction with miR-148a/152 in the placenta of preeclamptic rats and HTR-8 cells. Placenta 46:49–62. https://doi.org/10.1016/j.placenta.2016.08.086

    Article  CAS  PubMed  Google Scholar 

  53. Yang CP, Shiau MY, Lai YR, Ho KT, Hsiao CW, Chen CJ, Lo YL, Chang YH (2018) Interleukin-4 boosts insulin-induced energy deposits by enhancing glucose uptake and lipogenesis in hepatocytes. Oxid Med Cell Longev 2018:6923187. https://doi.org/10.1155/2018/6923187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang L, Roh YS, Song J, Zhang B, Liu C, Loomba R, Seki E (2014) Transforming growth factor beta signaling in hepatocytes participates in steatohepatitis through regulation of cell death and lipid metabolism in mice. Hepatology 59:483–495. https://doi.org/10.1002/hep.26698

    Article  CAS  PubMed  Google Scholar 

  55. Yao Y, Zhang X, Chen HP, Li L, Xie W, Lan G, Zhao ZW, Zheng XL, Wang ZB, Tang CK (2016) MicroRNA-186 promotes macrophage lipid accumulation and secretion of pro-inflammatory cytokines by targeting cystathionine gamma-lyase in THP-1 macrophages. Atherosclerosis 250:122–132. https://doi.org/10.1016/j.atherosclerosis.2016.04.030

    Article  CAS  PubMed  Google Scholar 

  56. Zhang CJ, Zhu N, Liu Z, Shi Z, Long J, Zu XY, Tang ZW, Hu ZY, Liao DF, Qin L (2020) Wnt5a/Ror2 pathway contributes to the regulation of cholesterol homeostasis and inflammatory response in atherosclerosis. Biochim Biophys Acta Mol Cell Biol Lipids 1865:158547. https://doi.org/10.1016/j.bbalip.2019.158547

    Article  CAS  PubMed  Google Scholar 

  57. Zhang F, Sodroski C, Cha H, Li Q, Liang TJ (2017) Infection of hepatocytes with HCV increases cell surface levels of heparan sulfate proteoglycans, uptake of cholesterol and lipoprotein, and virus entry by up-regulating SMAD6 and SMAD7. Gastroenterology 152:257–270. https://doi.org/10.1053/j.gastro.2016.09.033

    Article  CAS  PubMed  Google Scholar 

  58. Zhang L, Wei J, Duan J, Guo C, Zhang J, Ren L, Liu J, Li Y, Sun Z, Zhou X (2020) Silica nanoparticles exacerbates reproductive toxicity development in high-fat diet-treated Wistar rats. J Hazard Mater 384:121361. https://doi.org/10.1016/j.jhazmat.2019.121361

    Article  CAS  PubMed  Google Scholar 

  59. Zhang Y, Lee FY, Barrera G, Lee H, Vales C, Gonzalez FJ, Willson TM, Edwards PA (2006) Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A 103:1006–1011. https://doi.org/10.1073/pnas.0506982103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhao J, Dong X, Hu X, Long Z, Wang L, Liu Q, Sun B, Wang Q, Wu Q, Li L (2016) Zinc levels in seminal plasma and their correlation with male infertility: a systematic review and meta-analysis. Sci Rep 6:22386. https://doi.org/10.1038/srep22386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhu X, Wu YB, Zhou J, Kang DM (2016) Upregulation of lncRNA MEG3 promotes hepatic insulin resistance via increasing FoxO1 expression. Biochem Biophys Res Commun 469:319–325. https://doi.org/10.1016/j.bbrc.2015.11.048

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was sponsored by the S&T Program of Hebei (Grant No. 21377796D and 226Z7722G) and the Hebei Natural Science Foundation (Grant No.H2021314001).

Author information

Authors and Affiliations

Authors

Contributions

Jiajie Bi performed the experiments. Bo Sun analyzed the data. Huanhuan Li and Yuejia Li collated the data. Jing Ma and Jiajie Bi wrote the manuscript. Jing Ma and Shusong Wang conceived the idea, designed the study, collected the funds, and revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Shusong Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical Approval

All experimental procedures were approved by the ethics committee of the Hebei Institute of Reproductive Health Science and Technology.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Bi, J., Sun, B. et al. Zinc Improves Semen Parameters in High-Fat Diet-Induced Male Rats by Regulating the Expression of LncRNA in Testis Tissue. Biol Trace Elem Res 201, 4793–4805 (2023). https://doi.org/10.1007/s12011-022-03550-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03550-7

Keywords

Navigation