Skip to main content
Log in

Effects of Ozone Therapy on Chronic Arsenic Poisoning in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Arsenic (As) is a toxic metalloid that affects many organs through drinking water. This study aims to examine the efficacy of ozone therapy on chronic arsenic toxicity. Twenty-four male Wistar albino rats were housed in individual cages and grouped as control, As, O3, and As + O3. As was applied by adding 5 mg/kg/day in drinking water for 60 days. Ozone therapy was applied at 0.5 mg/kg/day (i.p.) O3 in the last 5 days of the experimental period. Tissues were harvested and analyzed for histopathological injury and apoptotic markers. There was no significant difference between the As + O3 and O3 groups (p = 0.186 and p = 0.599) for light microscopic criteria: inflammatory cell infiltration and hydropic degeneration in liver tissue.

In TUNEL assessments, similar outcomes were obtained in the control and As + O3 groups. A statistically significant increase was observed in p53 and Caspase 3 (Casp-3) expression levels in the As group compared to the O3 and As + O3 groups. There was no significant difference between the As + O3 and O3 groups on peritubular hemorrhage and desquamation parameters in kidneys (p = 0.147 and p = 0.094). The KIM-1 expression level was significantly increased in the As group compared to the As + O3 group (p = 0.01), and the Casp-3 expression level was not significantly changed in the O3 group compared to the As + O3 group (p = 0.59). In conclusion, it is determined that ozone therapy has ameliorative effects on the microscopic injury of liver and kidney tissues. In addition to microscopic improvement, KIM-1 gene expression levels were ameliorated in the kidneys. The apoptotic cell counts and the Casp-3 and p53 gene expression levels were decreased by O3 administration. Thus, ozone therapy can be a treatment choice for As toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data supporting this study’s findings are available from the corresponding author upon request.

References

  1. Rao CV, Pal S, Mohammed A et al (2017) Biological effects and epidemiological consequences of arsenic exposure, and reagents that can ameliorate arsenic damage in vivo. Oncotarget 8(34):57605–57621. https://doi.org/10.18632/ONCOTARGET.17745

    Article  PubMed Central  PubMed  Google Scholar 

  2. Gupta VK, Singh S, Agrawal A, et al (2015) Phytochemicals mediated remediation of neurotoxicity induced by heavy metals. Biochem Res Int 2015. https://doi.org/10.1155/2015/534769

  3. Kumar A, Khushboo PR, Sharma B (2020) Modulation of superoxide dismutase activity by mercury, lead, and arsenic. Biol Trace Elem Res 196:654–661. https://doi.org/10.1007/S12011-019-01957-3

    Article  CAS  PubMed  Google Scholar 

  4. Singh N, Gupta VK, Kumar A, Sharma B (2017) Synergistic effects of heavy metals and pesticides in living systems. Front Chem 5:70. https://doi.org/10.3389/FCHEM.2017.00070/BIBTEX

    Article  PubMed Central  PubMed  Google Scholar 

  5. Mandal P (2017) An insight of environmental contamination of arsenic on animal health. Emerg Contam 3:17–22. https://doi.org/10.1016/J.EMCON.2017.01.004

    Article  Google Scholar 

  6. Smeester L, Fry RC (2018) Long-term health effects and underlying biological mechanisms of developmental exposure to arsenic. Curr Environ Health Rep 5:134–144. https://doi.org/10.1007/S40572-018-0184-1

    Article  CAS  PubMed  Google Scholar 

  7. Monteiro De Oliveira EC, Caixeta ES, Santos VSV, Pereira BB (2021) Arsenic exposure from groundwater: environmental contamination, human health effects, and sustainable solutions. J Toxicol Environ Health B Crit Rev 24:119–135. https://doi.org/10.1080/10937404.2021.1898504

    Article  CAS  PubMed  Google Scholar 

  8. World Health Organization (WHO) (2021) Guidelines for drinking-water quality, Fourth Edition. http://apps.who.int/iris/bitstream/10665/44584/1/9789241548151_eng.pdf. Accessed 18 April 2022. http://www.who.int. Accessed 31 Oct 2022.

  9. Naujokas MF, Anderson B, Ahsan H et al (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect 121:295–302. https://doi.org/10.1289/EHP.1205875

    Article  PubMed Central  PubMed  Google Scholar 

  10. Sharma B, Singh S, Siddiqi NJ (2014) Biomedical implications of heavy metals induced imbalances in redox systems. Biomed Res Int. https://doi.org/10.1155/2014/640754

    Article  PubMed Central  PubMed  Google Scholar 

  11. Şahinkaya S, Kalıpcı E, Öztürk M et al (2013) As (III)’ün As (V)’e Ultrasonik Oksidasyonu. Nevşehir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2(1):103–108

    Google Scholar 

  12. Prakash S, Verma AK (2021) Arsenic It’s toxicity and impact on human health. Int J Biol Innov 03(01):38–47. https://doi.org/10.46505/IJBI.2021.3102

    Article  Google Scholar 

  13. Nurchi VM, Djordjevic AB, Crisponi G, et al (2020) Arsenic toxicity: molecular targets and therapeutic agents. Biomolecules 10. https://doi.org/10.3390/BIOM10020235

  14. Jain N, Chandramani S (2018) Arsenic poisoning- An overview. Indian J Med Specialities 9:143–145. https://doi.org/10.1016/J.INJMS.2018.04.006

    Article  Google Scholar 

  15. Rahaman MS, Rahman MM, Mise N, et al (2021) Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environ Pollut 289. https://doi.org/10.1016/J.ENVPOL.2021.117940

  16. Zeng J, Lu J (2018) Mechanisms of action involved in ozone-therapy in skin diseases. Int Immunopharmacol 56:235–241. https://doi.org/10.1016/J.INTIMP.2018.01.040

    Article  CAS  PubMed  Google Scholar 

  17. Paldir E, Eroglu HA (2021) Therapeutic potential of ozone and L-carnitine combined administrations against experimentally-induced acetaminophen. Plant Sci 31:981–987. https://doi.org/10.36899/JAPS.2021.4.0294

    Article  CAS  Google Scholar 

  18. Caliskan B, Guven A, Ozler M et al (2011) Ozone therapy prevents renal inflammation and fibrosis in a rat model of acute pyelonephritis 71:473–480. https://doi.org/10.3109/00365513.2011.587022

    Article  CAS  Google Scholar 

  19. Bilge A, Tüysüz M, Öztürk Ö et al (2019) The investigation of the effect of ozone therapy on gout in experimental rat models 25:245–249. https://doi.org/10.9775/kvfd.2018.20793

    Article  Google Scholar 

  20. Adali Y, Eroǧlu HA, Makav M, Guvendi GF (2019) Efficacy of ozone and selenium therapy for alcoholic liver injury: an experimental model. In Vivo (Brooklyn) 33:763–769. https://doi.org/10.21873/INVIVO.11537

    Article  CAS  Google Scholar 

  21. Bocci VA (2006) Scientific and medical aspects of ozone therapy. State of the Art. Arch Med Res 37:425–435. https://doi.org/10.1016/J.ARCMED.2005.08.006

    Article  CAS  PubMed  Google Scholar 

  22. Tezcan AH, Ozturk O, Ustebay S et al (2018) The beneficial effects of ozone therapy in acetaminophen-induced hepatotoxicity in mice. Pharmacol Rep 70:340–345. https://doi.org/10.1016/J.PHAREP.2017.11.003

    Article  CAS  PubMed  Google Scholar 

  23. Tapia SA, Grigorio MS (2014) Ozone therapy and its scientific foundations. Биopaдикaлы и aнтиoкcидaнты 1(1):10–33

    Google Scholar 

  24. Scassellati C, Galoforo AC, Bonvicini C, et al (2020) Ozone: a natural bioactive molecule with antioxidant property as potential new strategy in aging and in neurodegenerative disorders. Ageing Res Rev 63. https://doi.org/10.1016/J.ARR.2020.101138

  25. Chen Z, Liu X, Yu G et al (2016) Ozone therapy ameliorates tubulointerstitial inflammation by regulating TLR4 in adenine-induced CKD rats. Ren Fail 38:822–830. https://doi.org/10.3109/0886022X.2016.1143757

    Article  CAS  PubMed  Google Scholar 

  26. Paulesu L, Luzzi E, Bocci E (1991) Studies on the biological effects of ozone: 2. Induction of tumor necrosis factor (TNF-alpha) on human leucocytes. Lymphokine Cytokine Res 10(5):409–412

  27. Bocci V, Paulesu L (1990) Studies on the biological effects of ozone 1. Induction of interferon gamma on human leucocytes. Haematologica 75(6):510–515.

  28. Bocci V (2006) Is it true that ozone is always toxic? The end of a dogma. Toxicol Appl Pharmacol 216:493–504. https://doi.org/10.1016/J.TAAP.2006.06.009

    Article  CAS  PubMed  Google Scholar 

  29. Chen H, Xing B, Liu X et al (2008) Similarities between ozone oxidative preconditioning and ischemic preconditioning in renal ischemia/reperfusion injury. Arch Med Res 39:169–178. https://doi.org/10.1016/J.ARCMED.2007.09.005

    Article  CAS  PubMed  Google Scholar 

  30. Bashir S, Sharma Y, Irshad M et al (2006) Arsenic induced apoptosis in rat liver following repeated 60 days exposure. Toxicology 217:63–70. https://doi.org/10.1016/J.TOX.2005.08.023

    Article  CAS  PubMed  Google Scholar 

  31. Turk E, Kandemir FM, Yildirim S et al (2019) Protective effect of hesperidin on sodium arsenite-induced nephrotoxicity and hepatotoxicity in rats. Biol Trace Elem Res 189:95–108. https://doi.org/10.1007/S12011-018-1443-6

    Article  CAS  PubMed  Google Scholar 

  32. Ogun M, Ozcan A, Karaman M et al (2016) Oleuropein ameliorates arsenic induced oxidative stress in mice. J Trace Elem Med Biol 36:1–6. https://doi.org/10.1016/J.JTEMB.2016.03.006

    Article  CAS  PubMed  Google Scholar 

  33. Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16. https://doi.org/10.1016/S0378-4274(02)00084-X

    Article  CAS  PubMed  Google Scholar 

  34. Eroğlu HA, Makav M, Findik Guvendi̇ G et al (2020) Ozone vs melatonin: the therapeutic effects in alcoholic liver disease. J Harran Univ Med Fac 17:133–139. https://doi.org/10.35440/HUTFD.649302

    Article  Google Scholar 

  35. Büyük B, Karakoç E (2019) Effects of thiopental in cold ischemia in liver transplantation: an experimental study. J Surg Med 3:143–148. https://doi.org/10.28982/JOSAM.460075

    Article  Google Scholar 

  36. Öztopuz Ö, Türkön H, Şehitoğlu MH et al (2019) Hyperbaric oxygen treatment ameliorates gentamicin-induced nephrotoxicity and expression of kidney injury molecule 1 in the rat model. Undersea Hyperb Med 46:125–133

    Article  PubMed  Google Scholar 

  37. Büyük B, Demirci T, Adalı Y et al (2020) Can amniotic fluid be an alternative organ preservation solution for cold renal storage? Revista de nefrologia, dialisis y trasplante 40:14–24

    Google Scholar 

  38. Mochizuki H (2019) Arsenic neurotoxicity in humans. Int J Mol Sci 20(3418):3418. https://doi.org/10.3390/IJMS20143418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Platanias LC (2009) Biological responses to arsenic compounds. J Biol Chem 284:18583–18587. https://doi.org/10.1074/JBC.R900003200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Nandi D, Patra RC, Swarup D (2005) Effect of cysteine, methionine, ascorbic acid and thiamine on arsenic-induced oxidative stress and biochemical alterations in rats. Toxicology 211:26–35. https://doi.org/10.1016/J.TOX.2005.02.013

    Article  CAS  PubMed  Google Scholar 

  41. Kokilavani V, Devi MA, Sivarajan K, Panneerselvam C (2005) Combined efficacies of DL-alpha-lipoic acid and meso 2,3 dimercaptosuccinic acid against arsenic induced toxicity in antioxidant systems of rats. Toxicol Lett 160:1–7. https://doi.org/10.1016/J.TOXLET.2005.05.018

    Article  CAS  PubMed  Google Scholar 

  42. Güvendi GF, Eroğlu HA, Makav M et al (2020) Selenium or ozone: effects on liver injury caused by experimental iron overload. Life Sci 262:118558. https://doi.org/10.1016/J.LFS.2020.118558

    Article  PubMed  Google Scholar 

  43. Erken HA, Genç O, Erken G et al (2015) Ozone partially prevents diabetic neuropathy in rats. Exp Clin Endocrinol Diabetes 123:101–105. https://doi.org/10.1055/S-0034-1389954

    Article  CAS  PubMed  Google Scholar 

  44. Milnerowicz H, Śliwińska-Mossoń M, Sobiech KA (2017) The effect of ozone on the expression of metallothionein in tissues of rats chronically exposed to cadmium. Environ Toxicol Pharmacol 52:27–37. https://doi.org/10.1016/j.etap.2017.03.010

    Article  CAS  PubMed  Google Scholar 

  45. Gultekin FA, Bakkal BH, Guven B et al (2013) Effects of ozone oxidative preconditioning on radiation-induced organ damage in rats. J Radiat Res 54:36. https://doi.org/10.1093/JRR/RRS073

    Article  CAS  PubMed  Google Scholar 

  46. Güçlü A, Erken HA, Erken G et al (2016) The effects of ozone therapy on caspase pathways, TNF-α, and HIF-1α in diabetic nephropathy. Int Urol Nephrol 48:441–450. https://doi.org/10.1007/S11255-015-1169-8

    Article  PubMed  Google Scholar 

  47. Ozturk O, Eroglu HA, Ustebay S et al (2018) An experimental study on the preventive effects of N-acetyl cysteine and ozone treatment against contrast-induced nephropathy. Acta Cir Bras 33:508–517. https://doi.org/10.1590/S0102-865020180060000005

    Article  PubMed  Google Scholar 

  48. Gul H, Uysal B, Cakir E et al (2012) The protective effects of ozone therapy in a rat model of acetaminophen-induced liver injury. Environ Toxicol Pharmacol 34:81–86. https://doi.org/10.1016/J.ETAP.2012.02.006

    Article  CAS  PubMed  Google Scholar 

  49. van Timmeren MM, van den Heuvel MC, Bailly V et al (2007) Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J Pathol 212:209–217. https://doi.org/10.1002/PATH.2175

    Article  PubMed  Google Scholar 

  50. Jiang M, Qi L, Li L, Li Y (2020) The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer. Cell Death Discov 6(6):1 11. https://doi.org/10.1038/s41420-020-00349-0

    Article  CAS  Google Scholar 

  51. Khalilzadeh B, Charoudeh HN, Shadjou N et al (2016) Ultrasensitive caspase-3 activity detection using an electrochemical biosensor engineered by gold nanoparticle functionalized MCM-41: its application during stem cell differentiation. Sens Actuators B Chem 231:561–575. https://doi.org/10.1016/J.SNB.2016.03.043

    Article  CAS  Google Scholar 

  52. Duffy MJ, Synnott NC, O’Grady S, Crown J (2022) Targeting p53 for the treatment of cancer. Semin Cancer Biol 79:58–67. https://doi.org/10.1016/J.SEMCANCER.2020.07.005

    Article  CAS  PubMed  Google Scholar 

  53. Hafner A, Bulyk ML, Jambhekar A, Lahav G (2019) The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol 20:199–210. https://doi.org/10.1038/S41580-019-0110-X

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation and data collection were performed by Hüseyin Avni Eroğlu, Cemre Aydeğer, and Mustafa Makav. Histopathological and TUNEL analyses were performed by Başak Büyük. Genetic analyses were performed by Özlem Öztopuz and Mehmet Akif Ovalı. The first draft of the manuscript was written by Hüseyin Avni Eroğlu and Başak Büyük. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hüseyin Avni Eroğlu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Büyük, B., Aydeğer, C., Öztopuz, Ö. et al. Effects of Ozone Therapy on Chronic Arsenic Poisoning in Rats. Biol Trace Elem Res 201, 3951–3960 (2023). https://doi.org/10.1007/s12011-022-03486-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03486-y

Keywords

Navigation