Skip to main content

Advertisement

Log in

Sodium Fluoride and Sulfur Dioxide Derivatives Induce TGF-β1-Mediated NBCe1 Downregulation Causing Acid–Base Disorder of LS8 Cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of the present work was to assess whether the combination of sodium fluoride (NaF) and sulfur dioxide derivatives (SO2 derivatives) affects the expression of the electrogenic sodium bicarbonate cotransporter NBCe1 (SLC4A4), triggering an acid–base imbalance during enamel development, leading to enamel damage. LS8 cells was taken as the research objects and fluorescent probes, quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and factorial analysis were used to clarify the nature of the fluoro-sulfur interaction and the potential signaling pathway involved in the regulation of NBCe1. The results showed that exposure to fluoride or SO2 derivatives resulted in an acid–base imbalance, and these changes were accompanied by inhibited expression of NBCe1 and TGF-β1; these effects were more significant after fluoride exposure as compared to exposure to SO2 derivatives. Interestingly, in most cases, the toxic effects during combined exposure were significantly reduced compared to the effects observed with fluoride or sulfur dioxide derivatives alone. The results also indicated that activation of TGF-β1 signaling significantly upregulated the expression of NBCe1, and this effect was suppressed after the Smad, ERK, and JNK signals were blocked. Furthermore, fluoride and SO2 derivative-dependent NBCe1 regulation was found to require TGF-β1. In conclusion, this study indicates that the combined effect of fluorine and sulfur on LS8 cells is mainly antagonistic. TGF-β1 may regulate NBCe1 and may participate in the occurrence of dental fluorosis through the classic TGF-β1/Smad pathway and the unconventional ERK and JNK pathways.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

“The datasets generated during and/or analyzed during the current study are not publicly available due to (reason(s) why data are not public) but are available from the corresponding author on reasonable request..”

References

  1. Hong X, Liang H (2020) Status and causes of surface fluorine and acid pollution in typical coal-rich areas of China. J Min Sci 5(01):1–11

    Google Scholar 

  2. Cape JN, Fowler D, Davison A (2003) Ecological effects of sulfur dioxide, fluorides, and minor air pollutants: recent trends and research needs. Environ Int 29(2–3):201–211. https://doi.org/10.1016/S0160-4120(02)00180-0

    Article  CAS  Google Scholar 

  3. Idon PI, Enabulele JE (2018) Prevalence, severity, and request for treatment of dental fluorosis among adults in an endemic region of Northern Nigeria. Eur J Dent 12(2):184–190. https://doi.org/10.4103/ejd.ejd_260_17

    Article  Google Scholar 

  4. Denbesten P, Li W (2011) Chronic fluoride toxicity: dental fluorosis. Monogr Oral Sci 22:81–96. https://doi.org/10.1159/000327028

    Article  Google Scholar 

  5. Meng Z, Qin G, Zhang B, Bai J (2004) DNA damaging effects of sulfur dioxide derivatives in cells from various organs of mice. Mutagenesis 19(6):465–468. https://doi.org/10.1093/mutage/geh058

    Article  CAS  Google Scholar 

  6. Liang C, Gao Y, Zhao Y, Manthari RK, Ma J, Niu R, Wang J, Zhang J, Wang J (2018) Effects of fluoride and/or sulfur dioxide on morphology and DNA integrity in rats’ hepatic tissue. Biol Trace Elem Res 183(2):335–341. https://doi.org/10.1007/s12011-017-1152-6

    Article  CAS  Google Scholar 

  7. Wang C, Liang C, Ma J, Manthari RK, Niu R, Wang J, Wang J, Zhang J (2018) Co-exposure to fluoride and sulfur dioxide on histological alteration and DNA damage in rat brain. J Biochem Mol Toxicol 32(2) https://doi.org/10.1002/jbt.22023

  8. Zhang J, Li Z, Qie M, Zheng R, Shetty J, Wang J (2016) Sodium fluoride and sulfur dioxide affected male reproduction by disturbing blood-testis barrier in mice. Food Chem Toxicol 94:103–111. https://doi.org/10.1016/j.fct.2016.05.017

    Article  CAS  Google Scholar 

  9. Smith CE (1998) Cellular and chemical events during enamel maturation. Crit Rev Oral Biol Med 9(2):128–161. https://doi.org/10.1177/10454411980090020101

    Article  CAS  Google Scholar 

  10. Lacruz RS, Nanci A, Kurtz I, Wright JT, Paine ML (2010) Regulation of pH during amelogenesis. Calcif Tissue Int 86(2):91–103. https://doi.org/10.1007/s00223-009-9326-7

    Article  CAS  Google Scholar 

  11. Bronckers AL, Lyaruu DM, Jansen ID, Medina JF, Kellokumpu S, Hoeben KA, Gawenis LR, Oude-Elferink RP, Everts V (2009) Localization and function of the anion exchanger Ae2 in developing teeth and orofacial bone in rodents. J Exp Zool B Mol Dev Evol 312B(4):375–387. https://doi.org/10.1002/jez.b.21267

    Article  CAS  Google Scholar 

  12. Nordstrom T, Andersson LC (1861) Akerman K (2019) Regulation of intracellular pH by electrogenic Na+/HCO3- co-transporters in embryonic neural stem cell-derived radial glia-like cells. Biochim Biophys Acta Biomembr 6:1037–1048. https://doi.org/10.1016/j.bbamem.2019.03.007

    Article  CAS  Google Scholar 

  13. Gil-Perotin S, Jaijo T, Verdu AG, Rubio P, Mazon M, Gasque-Rubio R, Diaz S (2021) Epilepsy, status epilepticus, and hemiplegic migraine coexisting with a novel SLC4A4 mutation. Neurol Sci 42(9):3647–3654. https://doi.org/10.1007/s10072-020-04961-x

    Article  Google Scholar 

  14. Gawenis LR, Bradford EM, Prasad V, Lorenz JN, Simpson JE, Clarke LL, Woo AL, Grisham C, Sanford LP, Doetschman T, Miller ML, Shull GE (2007) Colonic anion secretory defects and metabolic acidosis in mice lacking the NBC1 Na+/HCO3- cotransporter. J Biol Chem 282(12):9042–9052. https://doi.org/10.1074/jbc.M607041200

    Article  CAS  Google Scholar 

  15. Liu Y, Lu QW, Chen LM (2012) Physiology and pathophysiology of Na(+)/HCO(3)(-) cotransporter NBCe1. Sheng Li Xue Bao 64(6):729–740

    CAS  Google Scholar 

  16. Ma JW, Wang HT, Liu HF, Dong LP, Ding Y, Bai JQ, Zhang Z, Dong LJ (2018) [Effects of centellaasiatica granule on the expression of Smad 2/3, Smad 7 and collagen in the mesangial cells stably expressed TGF-beta1]. Zhongguo Ying Yong Sheng Li Xue Za Zhi 34(2):122–125. https://doi.org/10.12047/j.cjap.5568.2018.030

  17. Nawshad A, Lagamba D, Polad A, Hay ED (2005) Transforming growth factor-beta signaling during epithelial-mesenchymal transformation: implications for embryogenesis and tumor metastasis. Cells Tissues Organs 179(1–2):11–23. https://doi.org/10.1159/000084505

    Article  CAS  Google Scholar 

  18. Haruyama N, Thyagarajan T, Skobe Z, Wright JT, Septier D, Sreenath TL, Goldberg M, Kulkarni AB (2006) Overexpression of transforming growth factor-beta1 in teeth results in detachment of ameloblasts and enamel defects. Eur J Oral Sci 114 Suppl 1:30–34, 39–41, 379. https://doi.org/10.1111/j.1600-0722.2006.00276.x

  19. Yokozeki M, Afanador E, Nishi M, Kaneko K, Shimokawa H, Yokote K, Deng C, Tsuchida K, Sugino H, Moriyama K (2003) Smad3 is required for enamel biomineralization. Biochem Biophys Res Commun 305(3):684–690. https://doi.org/10.1016/s0006-291x(03)00806-4

    Article  CAS  Google Scholar 

  20. Zhang X, Zhang Y, Xi S, Cheng G, Guo X (2012) The effect of different fluoride concentrations on the expression of transforming growth factor-beta1 in ameloblast of rat incisor. Hua Xi Kou Qiang Yi Xue Za Zhi 30(4):434–438

    CAS  Google Scholar 

  21. Everett ET (2011) Fluoride’s effects on the formation of teeth and bones, and the influence of genetics. J Dent Res 90(5):552–560. https://doi.org/10.1177/0022034510384626

    Article  CAS  Google Scholar 

  22. Liu D, Huang Y, Bu D, Liu AD, Holmberg L, Jia Y, Tang C, Du J, Jin H (2014) Sulfur dioxide inhibits vascular smooth muscle cell proliferation via suppressing the Erk/MAP kinase pathway mediated by cAMP/PKA signaling. Cell Death Dis 5:e1251. https://doi.org/10.1038/cddis.2014.229

    Article  CAS  Google Scholar 

  23. Huang Y, Shen Z, Chen Q, Huang P, Zhang H, Du S, Geng B, Zhang C, Li K, Tang C, Du J, Jin H (2016) Endogenous sulfur dioxide alleviates collagen remodeling via inhibiting TGF-beta/Smad pathway in vascular smooth muscle cells. Sci Rep 6:19503. https://doi.org/10.1038/srep19503

    Article  CAS  Google Scholar 

  24. Khakipoor S, Ophoven C, Schrodl-Haussel M, Feuerstein M, Heimrich B, Deitmer JW, Roussa E (2017) TGF-beta signaling directly regulates transcription and functional expression of the electrogenic sodium bicarbonate cotransporter 1, NBCe1 (SLC4A4), via Smad4 in mouse astrocytes. Glia 65(8):1361–1375. https://doi.org/10.1002/glia.23168

    Article  Google Scholar 

  25. Schrodl-Haussel M, Theparambil SM, Deitmer JW, Roussa E (2015) Regulation of functional expression of the electrogenic sodium bicarbonate cotransporter 1, NBCe1 (SLC4A4), in mouse astrocytes. Glia 63(7):1226–1239. https://doi.org/10.1002/glia.22814

    Article  Google Scholar 

  26. Jalali R, Guo J, Zandieh-Doulabi B, Bervoets TJ, Paine ML, Boron WF, Parker MD, Bijvelds MJ, Medina JF, Denbesten PK, Bronckers AL (2014) NBCe1 (SLC4A4) a potential pH regulator in enamel organ cells during enamel development in the mouse. Cell Tissue Res 358(2):433–442. https://doi.org/10.1007/s00441-014-1935-4

    Article  CAS  Google Scholar 

  27. Ji M, Xiao L, Xu L, Huang S, Zhang D (2018) How pH is regulated during amelogenesis in dental fluorosis. Exp Ther Med 16(5):3759–3765. https://doi.org/10.3892/etm.2018.6728

    Article  CAS  Google Scholar 

  28. Yan Q, Zhang Y, Li W, Denbesten PK (2007) Micromolar fluoride alters ameloblast lineage cells in vitro. J Dent Res 86(4):336–340. https://doi.org/10.1177/154405910708600407

    Article  CAS  Google Scholar 

  29. Farley JR, Wergedal JE, Baylink DJ (1983) Fluoride directly stimulates proliferation and alkaline phosphatase activity of bone-forming cells. Science 222(4621):330–332. https://doi.org/10.1126/science.6623079

    Article  CAS  Google Scholar 

  30. Burgener D, Bonjour JP, Caverzasio J (1995) Fluoride increases tyrosine kinase activity in osteoblast-like cells: regulatory role for the stimulation of cell proliferation and Pi transport across the plasma membrane. J Bone Miner Res 10(1):164–171. https://doi.org/10.1002/jbmr.5650100123

    Article  CAS  Google Scholar 

  31. He LF, Zou ZH, Zhong YF, Xie Q, Pan X, Yu RA (2011) Effects of fluoride on Fas signal pathway in rat incisor cells. Zhonghua Kou Qiang Yi Xue Za Zhi 46(6):347–351. https://doi.org/10.3760/cma.j.issn.1002-0098.2011.06.007

    Article  CAS  Google Scholar 

  32. Li W, Jiang B, Cao X, Xie Y, Huang T (2017) Protective effect of lycopene on fluoride-induced ameloblasts apoptosis and dental fluorosis through oxidative stress-mediated Caspase pathways. Chem Biol Interact 261:27–34. https://doi.org/10.1016/j.cbi.2016.11.021

    Article  CAS  Google Scholar 

  33. Yang T, Zhang Y, Li Y, Hao Y, Zhou M, Dong N, Duan X (2013) High amounts of fluoride induce apoptosis/cell death in matured ameloblast-like LS8 cells by downregulating Bcl-2. Arch Oral Biol 58(9):1165–1173. https://doi.org/10.1016/j.archoralbio.2013.03.016

    Article  CAS  Google Scholar 

  34. Wei A, Fu B, Wang Y, Zhai X, Xin X, Zhang C, Cao D, Zhang X (2015) Involvement of NO and ROS in sulfur dioxide induced guard cells apoptosis in Tagetes erecta. Ecotoxicol Environ Saf 114:198–203. https://doi.org/10.1016/j.ecoenv.2015.01.024

    Article  CAS  Google Scholar 

  35. Hu L, Huang B, Bai S, Tan J, Liu Y, Chen H, Liu Y, Zhu L, Zhang J, Chen H (2021) SO2 derivatives induce dysfunction in human trophoblasts via inhibiting ROS/IL-6/STAT3 pathway. Ecotoxicol Environ Saf 210:111872. https://doi.org/10.1016/j.ecoenv.2020.111872

    Article  CAS  Google Scholar 

  36. Deng MF, Zhu D, Gui CZ, Guan ZZ (2017) Effects of 7-nitroindazole on fluorine-induced apoptosis and nitric oxide synthase content of SH-SY5Y cells. J Environ Health 34(06):471–476

    Google Scholar 

  37. Bi F, Wei N, Wan L (2019) Effects of fluoride on phosphorylated NMDAR protein expression in rat hippocampal neurons. Chinese J Local Epidemiol 01:4–7

    Google Scholar 

  38. Costiniti V, Bomfim GH, Li Y, Mitaishvili E, Ye ZW, Zhang J, Townsend DM, Giacomello M, Lacruz RS (2020) Mitochondrial function in enamel development. Front Physiol 11:538. https://doi.org/10.3389/fphys.2020.00538

    Article  Google Scholar 

  39. Eckstein M, Vaeth M, Fornai C, Vinu M, Bromage TG, Nurbaeva MK, Sorge JL, Coelho PG, Idaghdour Y, Feske S, Lacruz RS (2017) Store-operated Ca(2+) entry controls ameloblast cell function and enamel development. JCI Insight 2(6):e91166. https://doi.org/10.1172/jci.insight.91166

    Article  Google Scholar 

  40. Zheng L, Zhang Y, He P, Kim J, Schneider R, Bronckers AL, Lyaruu DM, Denbesten PK (2011) NBCe1 in mouse and human ameloblasts may be indirectly regulated by fluoride. J Dent Res 90(6):782–787. https://doi.org/10.1177/0022034511398273

    Article  CAS  Google Scholar 

  41. Hildebrand KA, Zhang M, Germscheid NM, Wang C, Hart DA (2008) Cellular, matrix, and growth factor components of the joint capsule are modified early in the process of posttraumatic contracture formation in a rabbit model. Acta Orthop 79(1):116–125. https://doi.org/10.1080/17453670710014860

    Article  Google Scholar 

  42. Suzuki M, Shin M, Simmer JP, Bartlett JD (2014) Fluoride affects enamel protein content via TGF-beta1-mediated KLK4 inhibition. J Dent Res 93(10):1022–1027. https://doi.org/10.1177/0022034514545629

    Article  CAS  Google Scholar 

  43. Cho KW, Cai J, Kim HY, Hosoya A, Ohshima H, Choi KY, Jung HS (2009) ERK activation is involved in tooth development via FGF10 signaling. J Exp Zool B Mol Dev Evol 312(8):901–911. https://doi.org/10.1002/jez.b.21309

    Article  CAS  Google Scholar 

  44. Lee MJ, Cai J, Kwak SW, Cho SW, Harada H, Jung HS (2009) MAPK mediates Hsp25 signaling in incisor development. Histochem Cell Biol 131(5):593–603. https://doi.org/10.1007/s00418-009-0568-2

    Article  CAS  Google Scholar 

  45. Zhao L, Li J, Su J, Snead ML, Ruan J (2016) LS8 cell apoptosis induced by NaF through p-ERK and p-JNK - a mechanism study of dental fluorosis. Acta Odontol Scand 74(7):539–549. https://doi.org/10.1080/00016357.2016.1214980

    Article  CAS  Google Scholar 

  46. Thrane EV, Refsnes M, Thoresen GH, Lag M, Schwarze PE (2001) Fluoride-induced apoptosis in epithelial lung cells involves activation of MAP kinases p38 and possibly JNK. Toxicol Sci 61(1):83–91. https://doi.org/10.1093/toxsci/61.1.83

    Article  CAS  Google Scholar 

  47. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270(5240):1326–1331. https://doi.org/10.1126/science.270.5240.1326

    Article  CAS  Google Scholar 

  48. Burch ML, Yang SN, Ballinger ML, Getachew R, Osman N, Little PJ (2010) TGF-beta stimulates biglycan synthesis via p38 and ERK phosphorylation of the linker region of Smad2. Cell Mol Life Sci 67(12):2077–2090. https://doi.org/10.1007/s00018-010-0315-9

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (grant no. 41967051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenglong Tu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Wang, W., Yao, L. et al. Sodium Fluoride and Sulfur Dioxide Derivatives Induce TGF-β1-Mediated NBCe1 Downregulation Causing Acid–Base Disorder of LS8 Cells. Biol Trace Elem Res 201, 828–842 (2023). https://doi.org/10.1007/s12011-022-03169-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03169-8

Keywords

Navigation