Skip to main content
Log in

Gill Histopathological Biomarkers in Fish Exposed to Trace Metals in the Todos os Santos Bay, Brazil

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Histopathologies are widely recognized as biomarkers of environmental pollution. In this sense, we evaluated the putative relationship of gill histopathologies and distinct ecological impacts in two regions of Todos os Santos Bay (BTS), Brazil, the largest bay in Northeastern Brazil, South Atlantic. We compared the presence and concentration of metals (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn) in water, sediments, and gills and gill histopathologies of a demersal fish (Diapterus rhombeus) and a benthic fish (Ogcocephalus vespertilio). As expected, fish and sediment samples from historically contaminated areas (Aratu) showed more remarkable traces of metals than apparently low-impact areas (Jaguaripe). Likewise, the DTC (degree of tissue change) index and the volume densities were higher in fish caught in Aratu. In addition, the Diapterus rhombeus species showed more potential than Ogcocephalus vespertilio for risk assessment as it showed more responses to the environment reflected on more histopathologies. These data support the effectiveness of incorporating functional gill morphology to monitor impacts on estuarine biota that can be used as a reference to improve the management of ecosystems and prevent harm to human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Lu Y, Yuan J, Lu X, Su C et al (2018) Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability. Environ Pollut 239:670–680. https://doi.org/10.1016/j.envpol.2018.04.016

    Article  CAS  PubMed  Google Scholar 

  2. Whitfield AK, Elliott M (2002) Fishes as indicators of environmental and ecological changes within estuaries: a review of progress and some suggestions for the future. J Fish Biol 61:229–250. https://doi.org/10.1111/j.1095-8649.2002.tb01773.x

    Article  Google Scholar 

  3. Wild-Allen K, Skerratt J, Whitehead J, Rizwi F, Parslow J (2013) Mechanisms driving estuarine water quality: a 3-D biogeochemical model for informed management. Estuar Coast Shelf Sci 135:33–45. https://doi.org/10.1016/j.ecss.2013.04.009

    Article  CAS  Google Scholar 

  4. Arizzi Novelli A, Losso C, Libralato G, Tagliapietra D, Pantanib C, Volpi GA (2006) Is the 1:4 elutriation ratio reliable? Ecotoxicological comparison of four different sediment: water proportions. Ecotoxicol Environ Saf 65:306–313. https://doi.org/10.1016/j.ecoenv.2005.08.010

    Article  CAS  PubMed  Google Scholar 

  5. Barišić J, Dragun Z, Ramani S, Filipović VM, Krasnići N, Čož-Rakovac R, Kostov V, Rebok K, Jordanova M (2015) Evaluation of histopathological alterations in the gills of Vardar chub (Squalius vardarensis Karaman) as an indicator of river pollution. Ecotoxicol Environ Saf 118:158–166. https://doi.org/10.1016/j.ecoenv.2015.04.027

    Article  CAS  PubMed  Google Scholar 

  6. Araújo CFS, Lopes MV, Mirian RV, Menezes-Filho JA (2016) Cadmium and lead in seafood from the Aratu Bay, Brazil and the human health risk assessment. Environ Monit Assess 188:259. https://doi.org/10.1007/s10661-016-5262-y

    Article  CAS  Google Scholar 

  7. Vieira LR, Gravato C, Soares AMVM, Morgado F, Guilhermino F (2009) Acute effects of copper and mercury on the estuarine fish Pomatoschistus microps: Linking biomarkers to behavior. Chemosphere 76:1416–1427. https://doi.org/10.1016/j.chemosphere.2009.06.005

    Article  CAS  PubMed  Google Scholar 

  8. Guntenspergen GR, Baldwin AH, Hogan DM, Neckles HA, Nielsen MG (2009) Valuing urban wetlands: modification, preservation and restoration. In: McDonnell MJ, Hahs AK, 24. Breuste JH (ed) Ecology of cities and towns: a comparative approach. Cambridge University, pp 516–520

  9. Hatje V, Andrade RLB, de Oliveira CC, Polejack A, Gxaba T (2021) Pollutants in the South Atlantic Ocean: sources, knowledge gaps and perspectives for the decade of Ocean Science. Front Mar Sci 8:1–17. https://doi.org/10.3389/fmars.2021.644569

    Article  Google Scholar 

  10. Mathews T, Fisher NS (2008) Evaluating the trophic transfer of cadmium, polonium, and methylmercury in an estuarine food chain. Environ Toxicol Chem 27:1093–1101. https://doi.org/10.1897/07-318.1

    Article  CAS  PubMed  Google Scholar 

  11. Vasanthi LA, Revathi P, Mini J, Munuswamy N (2013) Integrated use of histological and ultrastructural biomarkers in Mugil cephalus for assessing heavy metal pollution in Ennore estuary, Chennai. Chemosphere 91:1156–1164. https://doi.org/10.1016/j.chemosphere.2013.01.021

    Article  CAS  Google Scholar 

  12. Rajeshkumar S, Li X (2018) Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicol Rep 5:288–295. https://doi.org/10.1016/j.toxrep.2018.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Has-Schon E, Bogut I, Strelec I (2006) Heavy metal profile in five fish species included in human diet, domiciled in the end flow of River Neretva (Croatia). Arch Environ Contam Toxicol 50:545–551. https://doi.org/10.1007/s00244-005-0047-2

    Article  CAS  PubMed  Google Scholar 

  14. Plessl C, Otachi EO, Körner W, Avenant-Oldewage A, Jirsa F (2017) Fish as bioindicators for trace element pollution from two contrasting lakes in the Eastern Rift Valley, Kenya: spatial and temporal aspects. Environ Sci Pollut Res 24:19767–19776. https://doi.org/10.1007/s11356-017-9518-z

    Article  CAS  Google Scholar 

  15. Mallat J (1985) Fish gill structural changes induced by toxicants and other irritants: a statistical review. Can J Fish Aquat Sci 42:630–648. https://doi.org/10.1139/f85-083

    Article  Google Scholar 

  16. Hatje V, Barros F (2012) Overview of the 20th century impact of trace metal contamination in the estuaries of Todos os Santos Bay: past, present and future 418 scenarios. Mar Pollut Bull 64:2603–2614. https://doi.org/10.1016/j.marpolbul.2012.07.009

    Article  CAS  PubMed  Google Scholar 

  17. Barros F, Hatje V, Figueiredo MB, Magalhães WF, Dórea HS, Emídio ES (2008) The structure of the benthic macrofaunal assemblages and sediments characteristics of the Paraguaçu estuarine system, NE, Brazil. Estuar Coast Shelf Sci 78:753–762. https://doi.org/10.1016/j.ecss.2008.02.016

    Article  Google Scholar 

  18. Reis-Filho JA, Giarrizzo T (2016) Microgobius meeki as a potential bio-indicator of habitat disturbance in shallow estuarine areas: a useful tool for the assessment of estuarine quality. J Fish Biol 23:126–134. https://doi.org/10.1111/jfb.13007

    Article  Google Scholar 

  19. Chaves PTCC, Otto G (1999) Aspectos biológicos de Diapterus rhombeus (Cuvier) (Teleostei, Gerreidae) na baía de Guaratuba, Paraná, Brasil. Rev Bras Zool 15:289–295

    Article  Google Scholar 

  20. Gibran FZ, Castro RMC (1999) Activity, feeding behaviour and diet of Ogcocephalus vespertilio in southern west Atlantic. J Fish Biol 55:588–595. https://doi.org/10.1111/j.1095-8649.1999.tb00701.x

    Article  Google Scholar 

  21. Ferreira AN, Beretta M, Mafalda PO Jr (2012) Assessing the impact of dredging on phytoplankton association of Aratu harbor, in Todos os Santos Bay, Bahia state. Arquivos de Ciências do Mar, Fortaleza 45:30–46

    Google Scholar 

  22. Rocha TS, Sales EA, Beretta M, Oliveira IB (2016) Effects of dredging at Aratu port in All Saints Bay, Brazil: monitoring the metal content in water and sediments. Environ Monit Assess 188:394. https://doi.org/10.1007/s10661-016-5396-y

    Article  CAS  PubMed  Google Scholar 

  23. Krull M, Abessa DMS, Hatje V, Barros F (2014) Integrated assessment of metal contamination in sediments from two tropical estuaries. Ecotoxicol Environ Saf 106:195–203. https://doi.org/10.1016/j.ecoenv.2014.04.038

    Article  CAS  PubMed  Google Scholar 

  24. Conama. Conselho Nacional do Meio Ambiente/Ministério do Meio Ambiente (2012) Resolução n° 454, de 1° de novembro de 2012 http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=693

  25. Poleksić V, Mitrović-Tutundžić V (1994) Fish gills as a monitor of sublethal and chronic effects of pollution. In: Müller R, Lloyd R (eds) Sublethal and chronic effects of pollutants on freshwater fish. Fishing News Books, Oxford, pp 339–352

    Google Scholar 

  26. Abdel-Moneim AM, Mohamed A, Al-Kahtani A, Elmenshawy OM (2012) Histopathological biomarkers in gills and liver of Oreochromis niloticus from polluted wetland environments, Saudi Arabia. Chemosphere 88:1028–1035. https://doi.org/10.1016/j.chemosphere.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  27. Monteiro SM, Rocha E, Fontaínhas-Fernandes A, Sousa M (2008) Quantitative histopathology of Oreochromis niloticus gills after copper exposure. J Fish Biol 73:1376–1392. https://doi.org/10.1111/j.1095-8649.2008.02009.x

    Article  CAS  Google Scholar 

  28. Howard CV, Reed MG (2005) Unbiased stereology: three-dimensional measurement in microscopy. Bios Scientific Publishers, Oxford

    Google Scholar 

  29. Anderson MJ, Gorley RN, Clarke KR (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x

    Article  Google Scholar 

  30. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth

  31. Chapman PM, Wang F (2001) Assessing sediment contamination in estuaries. Environ Toxicol Chem 20:3–22. https://doi.org/10.1002/etc.5620200102

    Article  CAS  PubMed  Google Scholar 

  32. Macêdo AKS, dos Santos KPE, Brighenti LS, Windmöller CC, Barbosa FAR, Ribeiro RIMA, dos Santos HB, Thomé RG (2020) Histological and molecular changes in gill and liver of fish (Astyanax lacustris Lütken, 1875) exposed to water from the Doce basin after the rupture of a mining tailings dam in Mariana MG, Brazil. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.139505

    Article  PubMed  Google Scholar 

  33. Mebane CA, Chowdhury MJM, De Schamphelaere KAC, Lofts S, Paquin PR, Santore RC, Wood CM (2020) Metal bioavailability models: current status, lessons learned, considerations for regulatory use, and the path forward. Environ Toxicol Chem 39:60–84. https://doi.org/10.1002/etc.4560

    Article  CAS  PubMed  Google Scholar 

  34. Ardeshir RA, Zolgharnein H, Movahedinia A, Salamat N, Zabihi E (2017) Comparison of waterborne and intraperitoneal exposure to fipronil in the Caspian white fish (Rutilus frisii) on acute toxicity and histopathology. Toxicol Rep 4:348–357. https://doi.org/10.1016/j.toxrep.2017.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Martins M, Santos JM, Costa MH, Costa PM (2016) Applying quantitative and semi-quantitative histopathology to address the interaction between sediment-bound polycyclic aromatic hydrocarbons in fish gills. Ecotoxicol Environ Saf 131:164–171. https://doi.org/10.1016/j.ecoenv.2016.04.019

    Article  CAS  PubMed  Google Scholar 

  36. Gauthier PT, Norwood WP, Prepas EE, Pyle GG (2014) Metal–PAH mixtures in the aquatic environment: a review of co-toxic mechanisms leading to more-than-additive outcomes. Aquat Toxicol 154:253–269. https://doi.org/10.1016/j.aquatox.2014.05.026

    Article  CAS  PubMed  Google Scholar 

  37. Oliveira Ribeiro CA, Vollaire Y, Sanchez-Chardi A, Roche H (2005) Bioaccumulation and the effects of organochlorine pesticides, PAH and heavy metals in the Eel (Anguilla anguilla) at the Camargue Nature Reserve, France. Aquatic Toxicol 74:53–69. https://doi.org/10.1016/j.aquatox.2005.04.008

    Article  CAS  Google Scholar 

  38. Cruz AL, Prado TM, Maciel LAS, Couto RD (2015) Environmental effects on the gills and blood of Oreochromis niloticus exposed to rivers of Bahia, Brazil. Ecotoxicol Environ Saf 111:23–31. https://doi.org/10.1016/j.ecoenv.2014.09.022

    Article  CAS  PubMed  Google Scholar 

  39. Bao J, Xing Y, Feng C, Kou S, Jiang H, Li X (2020) Acute and sub-chronic effects of copper on survival, respiratory metabolism, and metal accumulation in Cambaroides dauricus. Sci Rep 10:16700. https://doi.org/10.1038/s41598-020-73940-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Araujo HRM, Fernandes MN, Cruz AL (2019) Gill morphology and Na+/K+-Atpase activity of Gobionellus oceanicus (Teleostei: Gobiidae) in an estuarine system. Biol Trace Elem Res 187:526–535. https://doi.org/10.1007/s12011-018-1393-z

    Article  CAS  Google Scholar 

  41. Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177. https://doi.org/10.1152/physrev.00050.2003

    Article  CAS  PubMed  Google Scholar 

  42. Jia YJ, Wang L, Qu Z, Wang C, Yang Z (2017) Effects on heavy metal accumulation in freshwater fishes: species, tissues, and sizes. Environ Sci Pollut Res 24:9379–9386. https://doi.org/10.1007/s11356-017-8606-4

    Article  CAS  Google Scholar 

  43. Teien H-C, Standring WJF, Salbu B (2006) Mobilization of river transported colloidal aluminium upon mixing with seawater and subsequent deposition in fish gills. Sci Total Environ 364:149–164. https://doi.org/10.1016/j.scitotenv.2006.01.005

    Article  CAS  PubMed  Google Scholar 

  44. CRA. Centro de Recursos Ambientais (2004) Diagnóstico da concentração de metais pesados e hidrocarbonetos de petróleo nos sedimentos e biota da Baía de Todos os Santos. Consórcio BTS Hydros CH2MHILL. Governo do Estado da Bahia

  45. Hatje V, Bícego MC, Carvalho GC, Andrade JB (2009) Todos os Santos Bay: oceanographic aspects/chemical contamination. EDUFBA, Salvador

    Book  Google Scholar 

  46. Beg MU, Al-Jandal N, Al-Subiai S, Karam Q, Husain S, Butt SA, Ali A, Al-Hasan E, Al-Dufaileej S, Al-Husaini M (2015) Metallothionein, oxidative stress and trace metals in gills and liver of demersal and pelagic fish species from Kuwaits’ marine area. Mar Pollut Bull 75:344–356. https://doi.org/10.1016/j.marpolbul.2015.07.058

    Article  CAS  Google Scholar 

  47. Cruz AL, Prado RLP, Klein W (2019) The potential respiratory surfaces of a fish living in a historically polluted river. Anim Biol. https://doi.org/10.1163/15707563-20191109

    Article  Google Scholar 

  48. Al-Yousuf MH, El-Shahawi MS, Al-Ghais SM (2000) Trace metals in liver, skin and muscle of Lethrinus lentjan fish species in relation to body length and sex. Sci Total Environ 256:87–94. https://doi.org/10.1016/s0048-9697(99)00363-0

    Article  CAS  PubMed  Google Scholar 

  49. Canli M, Atli G (2003) The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environ Pollut 121:129–136. https://doi.org/10.1016/S0269-7491(02)00194-X

    Article  CAS  PubMed  Google Scholar 

  50. Ural M, Yildirim N, Danabas D, Kaplan O, Yildirim NC, Ozcelik M, Kurekci EF (2012) Some heavy metals accumulation in tissues in Capoeta umbla (Heckel, 1843) from Uzuncayir Dam Lake (Tunceli, Turkey). Environ Contam Tox 88:172–176. https://doi.org/10.1007/s00128-011-0474-x

    Article  CAS  Google Scholar 

  51. Brunelli E, Mauceri A, Maisano M, Bernab I, Giannetto A, DeDomenico E, Corapi B, Tripepi S, Fasulo S (2011) Ultrastructural and immunohistochemical investigation on the gills of the teleost, Thalassoma pavo L., exposed to cadmium. Acta histochem 113:201–213. https://doi.org/10.1016/j.acthis.2009.10.002

    Article  CAS  PubMed  Google Scholar 

  52. Pane EF, Haque A, Wood CM (2004) Mechanistic analysis of acute, Ni-induced respiratory toxicity in the rainbow trout (Oncorhynchus mykiss): an exclusively branchial phenomenon. Aquat Toxicol 69:11–24. https://doi.org/10.1016/j.aquatox.2004.04.009

    Article  CAS  PubMed  Google Scholar 

  53. Thophon S, Kruatachue M, Upatham ES, Pokethityook P, Sahaphong S, Jaritkhuan S (2003) Histopathological alterations of whiteseabass, Lates calarifera, in acute and subchronic cadmium exposure. Environ Pollut 121:307–320. https://doi.org/10.1016/S0269-7491(02)00270-1

    Article  CAS  PubMed  Google Scholar 

  54. Massar B, Dey S, Dutta K (2013) Electron microscopy of fish gill ultra-structure with reference to water pollution by municipal wastes. J Adv Microsc Res 7:1–7. https://doi.org/10.1166/jamr.2012.1109

    Article  Google Scholar 

  55. Macirella R, Brunelli R (2017) Morphofunctional alterations in zebrafish (Danio rerio) gills after exposure to mercury chloride. Int J Mol Sci 18:1–19. https://doi.org/10.3390/ijms18040824

    Article  CAS  Google Scholar 

  56. Samanta P, Im H, Na J, Jung J (2018) Ecological risk assessment of a contaminated stream using multi-level integrated biomarker response in Carassius auratus. Environ Pollut 233:429–438. https://doi.org/10.1016/j.envpol.2017.10.061

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

H.H.Q.O. and L.A.S.M. thank the National Council for Scientific and Technological Development, Brazil (CNPq) and Foundation for Research Support of the state of Bahia, Brazil (FAPESB) for the master’s fellowships. R.M.S. and E.F.E.S. thank CNPq for the scientific initiation scholarships. J.A.C.C.N. and J.A.R.F. thank Coordination of Improvement of Higher-Level Personnel, Brazil (CAPES), Finance Code 001, for PhD fellowships. The authors also thank Ralph Gruppi Thomé (UFSJ, Divinópolis, MG, Brazil) and Marisa Narciso Fernandes (UFSCar, São Carlos, SP, Brazil) for their comments and suggestions, Domingos Cardoso for computer assistance, and the Laboratório de Microscopia Eletrônica, FIOCRUZ, Salvador, Bahia, for the assistance on microscopy electronic transmission.

Funding

This study was financially supported by the National Institute of Science and Technology in Comparative Physiology (INCT-Comparative Physiology, Brazil) to ALC, and Fapesb (Foundation for Research Support of the State of Bahia, Brazil) (RED0037/2014) on behalf of ALC and PRAMA.

Author information

Authors and Affiliations

Authors

Contributions

H.H.Q.O.: conceptualization, formal analysis, investigation, methodology, and writing—original draft

J.A.R.F.: conceptualization, formal analysis, investigation, methodology, resources, supervision and writing—original draft.

J.A.C.C.N.: formal analysis, investigation, resources and writing—original draft

R.M.S.: investigation, formal analysis and writing—review & editing

E.F.E.S.: investigation and formal analysis

L.A.: investigation, formal analysis and writing—review & editing

P.R.A.M.A.: conceptualization, funding acquisition, project administration and resources

A.L.C.: conceptualization, formal analysis, investigation, funding acquisition, methodology, project administration, resources, supervision and writing—review & editing

Corresponding author

Correspondence to André Luis da Cruz.

Ethics declarations

Ethical Approval

The local ethics committee approved these procedures on animal use (Comitê de Ética no Uso de Animais, Instituto de Biologia, Universidade Federal da Bahia, 23/2015).

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, H.H.Q., Reis-Filho, J.A., Nunes, J.A.C.C. et al. Gill Histopathological Biomarkers in Fish Exposed to Trace Metals in the Todos os Santos Bay, Brazil. Biol Trace Elem Res 200, 3388–3399 (2022). https://doi.org/10.1007/s12011-021-02930-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02930-9

Keywords

Navigation