Skip to main content

Advertisement

Log in

Antioxidant Phytochemicals for the Prevention of Fluoride-Induced Oxidative Stress and Apoptosis: a Review

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Fluorosis is a major public health problem globally. The non-availability of specific treatment and the irreversible nature of dental and skeletal lesions poses a challenge in the management of fluorosis. Oxidative stress is known to be one of the most important mechanisms of fluoride toxicity. Fluoride promotes the accumulation of reactive oxygen species by inhibiting the activity of antioxidant enzymes, resulting in the excessive production of reactive oxygen species at the cellular level which further leads to activation of cell death processes such as apoptosis. Phytochemicals that act as antioxidants have the potential to protect cells from oxidative stress. Evidence confirms that clinical symptoms of fluorosis can be mitigated to some extent or prevented by long-term intake of antioxidants and plant products. The primary purpose of this review is to examine recent findings that focus on the amelioration of fluoride-induced oxidative stress and apoptosis by natural and synthetic phytochemicals and their molecular mechanisms of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. WHO (2019) Preventing diseases through healthy environments. Inadequate or excess fluoride: A major public health concern [Internet]. [cited 2020 Sep 13]. Available from: https://apps.who.int/iris/bitstream/handle/10665/329484/WHO-CED-PHE-EPE-19.4.5-eng.pdf?ua=1

  2. Wei W, Pang S, Sun D (2019) The pathogenesis of endemic fluorosis: research progress in the last 5 years. J Cell Mol Med. 23(4):2333–2342. https://doi.org/10.1111/jcmm.14185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. WHO (2017) Guidelines for drinking-water quality, 4th edition, incorporating the 1st addendum [Internet]. WHO. World Health Organization; 2017 [cited 2020 Sep 13]. Available from: http://www.who.int/water_sanitation_health/publications/drinking-water-quality-guidelines-4-including-1st-addendum/en/

  4. Malago J (2017) Fluoride levels in surface and groundwater in Africa: a review. Am J Water Sci Eng [Internet] 3(1):1. [cited 2020 Sep 14]. Available from: http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=369&doi=10.11648/j.ajwse.20170301.11. https://doi.org/10.11648/j.ajwse.20170301.11

    Article  Google Scholar 

  5. Khairnar MR, Dodamani AS, Jadhav HC, Naik RG, Deshmukh MA (2015) Mitigation of fluorosis — a review [Internet]. Vol. 9, Journal of Clinical and Diagnostic Research. Journal of Clinical and Diagnostic Research:ZE05–ZE09. [cited 2020 Sep 24] Available from: /pmc/articles/PMC4525626/?report=abstract. https://doi.org/10.7860/JCDR/2015/13261.6085

  6. Shenoy PS, Sen U, Kapoor S, Ranade AV, Chowdhury CR, Bose B (2019) Sodium fluoride induced skeletal muscle changes: degradation of proteins and signaling mechanism. Environ Pollut. 244:534–548. https://doi.org/10.1016/j.envpol.2018.10.034

    Article  CAS  PubMed  Google Scholar 

  7. Asawa K, Singh A, Bhat N, Tak M, Shinde K, Jain S (2015) Association of temporomandibular joint signs & symptoms with dental fluorosis & skeletal manifestations in endemic fluoride areas of Dungarpur district, Rajasthan, India. J Clin Diagnostic Res [Internet] 9(12):ZC18–ZC21. [cited 2020 Sep 24] Available from: /pmc/articles/PMC4717726/?report=abstract. https://doi.org/10.7860/JCDR/2015/15807.6958

    Article  CAS  Google Scholar 

  8. Leela Lyengar. 22 Technologies for fluoride removal [Internet]. [cited 2020 Nov 9]. Available from: https://www.samsamwater.com/library/TP40_22_Technologies_for_fluoride_removal.pdf

  9. Fewtrell L, Smith S, Kay D, Bartram J (2006) An attempt to estimate the global burden of disease due to fluoride in drinking water. J Water Health. 4(4):533–542. https://doi.org/10.2166/wh.2006.045

    Article  CAS  PubMed  Google Scholar 

  10. Thole B (2013 [cited 2020 Nov 6]. Available from: 10.5772/54985) Ground water contamination with fluoride and potential fluoride removal technologies for East and Southern Africa. In: Dar IA, MA (eds) Perspectives in Water Pollution [Internet]. InTech. https://doi.org/10.5772/54985

  11. Qin X, Wang S, Yu M, Zhang L, Li X, Zuo Z et al (2009) Child skeletal fluorosis from indoor burning of coal in Southwestern China. J Environ Public Health. https://doi.org/10.1155/2009/969764

  12. Brindha K, Elango L Elango B and Fluoride in groundwater: causes, implications and mitigation measures. Department of Geology, Anna University, Chennai- 600025, India Appl Environ Manag. 2011;111-136

  13. Brunt R, Vasak L, Griffioen J (2004) Fluoride in groundwater: probability of occurrence of excessive concentration on global scale. Int Groundwater Resources Accessment Centre, UNESCO [Internet] [cited 2020 Nov 6];Report nr. SP 2(April):3. Available from: http://www.wateraid.org

  14. Kaseva ME (2006) Contribution of trona (magadi) into excessive fluorosis—a case study in Maji ya Chai ward, northern Tanzania. Sci Total Environ. 366(1):92–100. https://doi.org/10.1016/j.scitotenv.2005.08.049

    Article  CAS  PubMed  Google Scholar 

  15. WHO (2020) WHO | Water-related diseases [Internet]. [cited 2020 Nov 6]. Available from: https://www.who.int/water_sanitation_health/diseases-risks/diseases/fluorosis/en/

  16. Everett ET (2011) Critical reviews in oral biology & medecine: fluoride’s effects on the formation of teeth and bones, and the influence of genetics [Internet]. J Dental Res International Association for Dental Research 90:552–60 [cited 2020 Nov 6]. Available from: /pmc/articles/PMC3144112/?report=abstract. https://doi.org/10.1177/0022034510384626

  17. Kurdi MS (2016) Chronic fluorosis: The disease and its anaesthetic implications. Indian J Anaesth [Internet]. 60(3):157–62 [cited 2020 Nov 7]. Available from: /pmc/articles/PMC4800930/?report=abstract. https://doi.org/10.4103/0019-5049.177867

  18. Li Y, Liang C, Slemenda CW, Ji R, Sun S, Cao J et al (2001) Effect of long-term exposure to fluoride in drinking water on risks of bone fractures. J Bone Miner Res. 16(5):932–939. https://doi.org/10.1359/jbmr.2001.16.5.932

    Article  CAS  PubMed  Google Scholar 

  19. Susheela AK, Toteja GS (2018) Prevention & control of fluorosis & linked disorders: —Developments in the 21 st century — reaching out to patients in the community & hospital settings for recovery [Internet]. Indian J Med Res Wolters Kluwer Medknow Publications 148:539–47. [cited 2020 Nov 7]. Available from: /pmc/articles/PMC6366265/?report=abstract. https://doi.org/10.4103/ijmr.IJMR_1775_18

  20. Mohapatra M, Anand S, Mishra BK, Giles DE, Singh P (2009) Review of fluoride removal from drinking water. J Environ Manage. 91(1):67–77. https://doi.org/10.1016/j.jenvman.2009.08.015

    Article  CAS  PubMed  Google Scholar 

  21. WHO (2008) Guidelines for drinking-water quality third edition incorporating the first and second addenda volume 1 recommendations Geneva 2008 WHO library cataloguing-in-publication data. Guidel Drink Qual. 1.[cited 2020 Nov 9]

  22. Viswanathan G, Jaswanth A, Gopalakrishnan S, Siva Ilango S (2009) Mapping of fluoride endemic areas and assessment of fluoride exposure. Sci Total Environ [Internet]. 407(5):1579–87 15 [cited 2020 Nov 9]. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0048969708010504. https://doi.org/10.1016/j.scitotenv.2008.10.020

  23. Luo Q, Cui H, Deng H, Kuang P, Liu H, Lu Y, et al. (2017) Histopathological findings of renal tissue induced by oxidative stress due to different concentrations of fluoride. Oncotarget [Internet]. 8(31):50430–46. [cited 2020 Sep 24]. Available from: /pmc/articles/PMC5584147/?report=abstract. https://doi.org/10.18632/oncotarget.17365

  24. Shanmugam T, Selvaraj M, Poomalai S (2016) Epigallocatechin gallate potentially abrogates fluoride induced lung oxidative stress, inflammation via Nrf2/Keap1 signaling pathway in rats: An in-vivo and in-silico study. Int Immunopharmacol [Internet]. 39:128–39 1 [cited 2020 Oct 18]. Available from: https://pubmed.ncbi.nlm.nih.gov/27472294/. https://doi.org/10.1016/j.intimp.2016.07.022

  25. Lu Y, Luo Q, Cui H, Deng H, Kuang P, Liu H, et al. (2017) Sodium fluoride causes oxidative stress and apoptosis in the mouse liver. Aging (Albany NY) [Internet]. 9(6):1623–39. [cited 2020 Sep 24]. Available from: /pmc/articles/PMC5509460/?report=abstract. https://doi.org/10.18632/aging.101257

  26. Basha PM, Madhusudhan N (2010) Pre and post natal exposure of fluoride induced oxidative macromolecular alterations in developing central nervous system of rat and amelioration by antioxidants. Neurochem Res [Internet]. 35(7):1017–28. [cited 2020 Oct 16]. Available from: https://pubmed.ncbi.nlm.nih.gov/20336367/. https://doi.org/10.1007/s11064-010-0150-2

  27. Sun Z, Li S, Guo Z, Li R, Wang J, Niu R, et al. (2018) Effects of fluoride on SOD and CAT in testis and epididymis of mice. Biol Trace Elem Res [Internet]. 184(1):148–53. [cited 2020 Oct 18]. Available from: https://pubmed.ncbi.nlm.nih.gov/28990137/. https://doi.org/10.1007/s12011-017-1181-1

  28. Ozbey U, Deger Y, Yur F, Çambay Z, Ozbeye G (2017) Investigation of blood antioxidant enzyme levels and glutathione peroxidase, catalase, and superoxide dismutase gene polymorphism in sheep with fluorosis. Fluoride. 50(3):374–382

    CAS  Google Scholar 

  29. Yilmaz S, Yur F (2012) Nitric oxide oxidation products and the activities of catalase and carbonic anhydrase in sheep with fluorosis. Fluoride. 45(3):247–250

    Google Scholar 

  30. Yur F, Mert N, Dede S, Deǧer Y, Ertekin A, Mert H et al (2013) Evaluation of serum lipoprotein and tissue antioxidant levels in sheep with fluorosis. Fluoride. 46(2):90–96

    CAS  Google Scholar 

  31. Shivarajashankara YM, Shivashankara AR, Hanumanth Rao S, Gopalakrishna BP (2001) Oxidative stress in children with endemic skeletal fluorosis. Fluoride. 34(2):103–107

    Google Scholar 

  32. Ailani V, Gupta RC, Gupta SK, Gupta K (2009) Oxidative stress in cases of chronic fluoride intoxication. Indian J Clin Biochem. 24(4):426–429. https://doi.org/10.1007/s12291-009-0076-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rao SM, Sherlin HJ, Anuja N, Pratibha R, Priya P, Chandrasekar T (2011) Morphometry of buccal mucosal cells in fluorosis — a new paradigm. Hum Exp Toxicol [Internet]. 30(11):1761–8. [cited 2020 Sep 24]. Available from: http://journals.sagepub.com/doi/10.1177/0960327111400109. https://doi.org/10.1177/0960327111400109

  34. Ameeramja J, Panneerselvam L, Govindarajan V, Jeyachandran S, Baskaralingam V, Perumal E (2016) Tamarind seed coat ameliorates fluoride induced cytotoxicity, oxidative stress, mitochondrial dysfunction and apoptosis in A549 cells. J Hazard Mater [Internet]. 301:554–65. [cited 2020 Sep 26]. Available from: https://pubmed.ncbi.nlm.nih.gov/26439939/. https://doi.org/10.1016/j.jhazmat.2015.09.037

  35. Li W, Jiang B, Cao X, Xie Y, Huang T (2017) Protective effect of lycopene on fluoride-induced ameloblasts apoptosis and dental fluorosis through oxidative stress-mediated Caspase pathways. Chem Biol Interact [Internet]. 261:27–34. [cited 2020 Sep 23]. Available from: https://pubmed.ncbi.nlm.nih.gov/27871895/. https://doi.org/10.1016/j.cbi.2016.11.021

  36. Shuhua X, Ziyou L, Ling Y, Fei W, Sun G (2012) A role of fluoride on free radical generation and oxidative stress in Bv-2 microglia cells. Mediators Inflamm. 2012. https://doi.org/10.1155/2012/102954

  37. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organization Journal. https://doi.org/10.1097/WOX.0b013e3182439613

  38. Barbier O, Arreola-Mendoza L, Del Razo LM (2010) Molecular mechanisms of fluoride toxicity. Chem Biol Interact. 188(2):319–333. https://doi.org/10.1016/j.cbi.2010.07.011

    Article  CAS  PubMed  Google Scholar 

  39. Miranda GHN, Gomes BAQ, Bittencourt LO, Aragão WAB, Nogueira LS, Dionizio AS et al (2018) Chronic exposure to sodium fluoride triggers oxidative biochemistry misbalance in mice: Effects on peripheral blood circulation. Oxid Med Cell Longev. https://doi.org/10.1155/2018/8379123

  40. Chlubek D (2003) Fluoride and oxidative stress [Internet]. Vol. 36, Fluoride. International Society for Fluoride Research, Dunedin, pp 217–228 Available from: https://www.fluorideresearch.org/364/files/FJ2003_v36_n4_p217-228.pdf

    Google Scholar 

  41. Mahaboob Basha P, Madhusudhan N (2011) Effect of maternal exposure of fluoride on oxidative stress markers and amelioration by selected antioxidants in developing central nervous system of rats. Biologia (Bratisl) [Internet]. 66(1):187–193. Available from: https://www.degruyter.com/view/journals/biolog/66/1/article-p187.xml. https://doi.org/10.2478/s11756-010-0136-1

    Article  CAS  Google Scholar 

  42. Connett M (2012) Fluoride & Oxidative Stress [Internet]. Fluoride Action Network. [cited 2020 Sep 25]. Available from: https://fluoridealert.org/studies/oxidative-stress/

  43. Zhang YJ, Gan RY, Li S, Zhou Y, Li AN, Xu DP, et al. (2015) Antioxidant phytochemicals for the prevention and treatment of chronic diseases [Internet]. Molecules MDPI AG 20:21138–56. [cited 2020 Sep 25]. Available from: https://pubmed.ncbi.nlm.nih.gov/26633317/. https://doi.org/10.3390/molecules201219753

  44. Liu RH (2013) Health-promoting components of fruits and vegetables in the diet. Adv Nutr [Internet]. 4(3):384S. [cited 2020 Sep 25]. Available from: /pmc/articles/PMC3650511/?report=abstract. https://doi.org/10.3945/an.112.003517

  45. Webb D (2013) Phytochemicals’ role in good health. Today’s Dietitian [Internet]. 70 [cited 2020 Sep 25]. Available from: https://www.todaysdietitian.com/newarchives/090313p70.shtml

  46. De Felice SL (1989) The NutraCeutical Revolution: fueling a powerful, new international market. Harvard Univ Adv Manag Progr Biomed Res Dev Como, Italy [Internet]. [cited 2020 Sep 25]; Available from: https://fimdefelice.org/library/the-nutraceutical-revolution-fueling-a-powerful-new-international-market/

  47. Calvani M, Pasha A, Favre C (2020) Nutraceutical boom in cancer: inside the labyrinth of reactive oxygen species [Internet]. Int J Mol Sci MDPI AG 21: 1936. [cited 2020 Sep 25]. Available from: www.mdpi.com/journal/ijms. https://doi.org/10.3390/ijms21061936

  48. Ashwlayan VD, Nimesh S (2018) Nutraceuticals in the management of diabetes mellitus. Pharm Pharmacol Int J [Internet]. 6(2):114–20. [cited 2020 Sep 25]. Available from: http://medcraveonline.com. https://doi.org/10.15406/ppij.2018.06.00166

  49. Sosnowska B, Penson P, Banach M (2017) The role of nutraceuticals in the prevention of cardiovascular disease [Internet]. Cardiovasc Diagn Ther AME Publishing Company 7:S21–31. [cited 2020 Sep 25]. Available from: /pmc/articles/PMC5418215/?report=abstract. https://doi.org/10.21037/cdt.2017.03.20

  50. Dadhania PV, Trivedi P, Vikram A, Nand Tripathi D (2016) Nutraceuticals against neurodegeneration: a mechanistic insight. Curr Neuropharmacol [Internet]. 14(6):627–40 [cited 2020 Sep 25]. Available from: /pmc/articles/PMC4981739/?report=abstract. https://doi.org/10.2174/1570159x14666160104142223

  51. Chang CL, Lin CS, Lai GH (2012) Phytochemical characteristics, free radical scavenging activities, and neuroprotection of five medicinal plant extracts. Evidence-based Complement Altern Med. 2012. https://doi.org/10.1155/2012/984295

  52. Salar RK, Seasotiya L (2011) Free radical scavenging activity, phenolic contents and phytochemical evaluation of different extracts of stem bark of Butea monosperma (Lam.) Kuntze. Front Life Sci [Internet]. 5(3–4):107–16. [cited 2020 Nov 7]. Available from: http://www.tandfonline.com/doi/abs/10.1080/21553769.2011.635813. https://doi.org/10.1080/21553769.2011.635813

  53. Benmehdi H, Behilil A, Memmou F, Amrouche A (2017) Free radical scavenging activity, kinetic behaviour and phytochemical constituents of Aristolochia clematitis L. roots. Arab J Chem. 10:S1402–S1408. https://doi.org/10.1016/j.arabjc.2013.04.015

    Article  CAS  Google Scholar 

  54. Thatoi HN, Patra JK, Das SK (2014) Free radical scavenging and antioxidant potential of mangrove plants: a review. Acta Physiol Plant 36:561–579. https://doi.org/10.1007/s11738-013-1438-z

    Article  CAS  Google Scholar 

  55. Gad FAM, Farouk SM, Emam MA (2020) Antiapoptotic and antioxidant capacity of phytochemicals from Roselle (Hibiscus sabdariffa) and their potential effects on monosodium glutamate-induced testicular damage in rat. Environ Sci Pollut Res [Internet] 1–12. [cited 2020 Nov 7]. Available from: https://link.springer.com/article/10.1007/s11356-020-10674-7. https://doi.org/10.1007/s11356-020-10674-7

  56. Naoi M, Shamoto-Nagai M, Maruyama W (2019) Neuroprotection of multifunctional phytochemicals as novel therapeutic strategy for neurodegenerative disorders: antiapoptotic and antiamyloidogenic activities by modulation of cellular signal pathways. Future Neurol [Internet] 14(1):FNL9. [cited 2020 Nov 7]. Available from: https://www.futuremedicine.com/doi/10.2217/fnl-2018-0028. https://doi.org/10.2217/fnl-2018-0028

  57. Dutta K, Ghosh D, Basu A (2009) Curcumin protects neuronal cells from japanese encephalitis virus-mediated cell death and also inhibits infective viral particle formation by dysregulation of ubiquitin-proteasome system. J Neuroimmune Pharmacol [Internet]. 4(3):328–37. [cited 2020 Nov 7]. Available from: https://pubmed.ncbi.nlm.nih.gov/19434500/. https://doi.org/10.1007/s11481-009-9158-2

  58. Sobeh M, Mahmoud MF, Hasan RA, Cheng H, El-Shazly AM, Wink M (2017) Senna singueana: Antioxidant, hepatoprotective, antiapoptotic properties and phytochemical profiling of a methanol bark extract. Molecules [Internet]. 22(9):1502. [cited 2020 Nov 7]. Available from: https://pubmed.ncbi.nlm.nih.gov/28885586/. https://doi.org/10.3390/molecules22091502

  59. Choi YJ, Kang JS, Park JHY, Lee YJ, Choi JS, Kang YH (2003) Polyphenolic flavonoids differ in their antiapoptotic efficacy in hydrogen peroxide-treated human vascular endothelial cells. J Nutr [Internet]. 133(4):985–91. [cited 2020 Nov 7]. Available from: https://academic.oup.com/jn/article/133/4/985/4688298. https://doi.org/10.1093/jn/133.4.985

  60. Inkielewicz-Stepniak I, Radomski MW, Wozniak M (2012) Fisetin prevents fluoride- and dexamethasone-induced oxidative damage in osteoblast and hippocampal cells. Food Chem Toxicol [Internet]. 50(3–4):583–9 [cited 2020 Oct 18]. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0278691511006818. https://doi.org/10.1016/j.fct.2011.12.015

  61. K S (2016) Hematobiochemical and antioxidant evaluation of aloe vera whole leaf extract on fluoride induced toxicity in Wistar Albino Rats. SOJ Vet Sci 2(1):1–5. https://doi.org/10.15226/2381-2907/2/1/00115

    Article  Google Scholar 

  62. Madhusudhan N, Mahaboob Basha P, Rai P, Ahmed F, Ravi Prasad G (2010) Effect of maternal fluoride exposure on developing CNS of rats: protective role of Aloe vera, Curcuma longa and Ocimum sanctum. Indian J Exp Biol [Internet]. 48(8):830–6. [cited 2020 Oct 18]. Available from: https://pubmed.ncbi.nlm.nih.gov/21341542/.

  63. Bouasla A, Bouasla I, Boumendjel A, Abdennour C, El Feki A, Messarah M. (2016) Prophylactic effects of pomegranate (Punica granatum) juice on sodium fluoride induced oxidative damage in liver and erythrocytes of rats. Can J Physiol Pharmacol [Internet]. 94(7):709–18. [cited 2020 Oct 18]. Available from: https://cdnsciencepub.com/doi/abs/10.1139/cjpp-2015-0226. https://doi.org/10.1139/cjpp-2015-0226

  64. Pritam Sadhukhan S (2016). Anti-oxidative effect of genistein and mangiferin on sodium fluoride induced oxidative insult of renal cells: a comparative study. Biomarkers J [Internet]. 2(1):1 [cited 2020 Oct 18]. Available from: https://biomarkers.imedpub.com/antioxidative-effect-of-genistein-and-mangiferin-on-sodium-fluoride-induced-oxidative-insult-of-renal-cells-a-comparative-study.php?aid=8207.

  65. Ameeramja J, Perumal E (2018) Possible Modulatory effect of tamarind seed coat extract on fluoride-induced pulmonary inflammation and fibrosis in rats. Inflammation [Internet]. 41(3):886–95 [cited 2020 Sep 26]. Available from: http://link.springer.com/10.1007/s10753-018-0743-5. https://doi.org/10.1007/s10753-018-0743-5

  66. Vasant RA, Narasimhacharya AVRL (2012) Ameliorative effect of tamarind leaf on fluoride-induced metabolic alterations. Environ Health Prev Med [Internet]. 17(6):484–93. [cited 2020 Sep 13]. Available from: /pmc/articles/PMC3493631/?report=abstract. https://doi.org/10.1007/s12199-012-0277-7

  67. Hassan HA, Abdel-Aziz AF (2010) Evaluation of free radical-scavenging and anti-oxidant properties of black berry against fluoride toxicity in rats. Food Chem Toxicol [Internet]. 48(8–9):1999–2004. Available from: https://www.researchgate.net/publication/44601241_Evaluation_of_free_radical-scavenging_and_anti-oxidant_properties_of_black_berry_against_fluoride_toxicity_in_rats. https://doi.org/10.1016/j.fct.2010.05.018

    Article  CAS  PubMed  Google Scholar 

  68. Hamza RZ, El-Shenawy NS, Ismail HAA (2015) Protective effects of blackberry and quercetin on sodium fluoride-induced oxidative stress and histological changes in the hepatic, renal, testis and brain tissue of male rat. J Basic Clin Physiol Pharmacol. 26(3):237–251. https://doi.org/10.1515/jbcpp-2014-0065

    Article  CAS  PubMed  Google Scholar 

  69. Hassan HA, Yousef MI (2009) Mitigating effects of antioxidant properties of black berry juice on sodium fluoride induced hepatotoxicity and oxidative stress in rats. Food Chem Toxicol. 47(9):2332–2337. https://doi.org/10.1016/j.fct.2009.06.023

    Article  CAS  PubMed  Google Scholar 

  70. Karadeniz A, Şimşek N, Koç F, Alp H (2009) The investigation of protective effects of the panax ginseng on oxidative damage induced by chronic fluoride toxicity in mice testis tissue. Kafkas Univ Vet Fak Derg. 15(1):1–8. https://doi.org/10.9775/kvfd.2008.23-a

    Article  Google Scholar 

  71. Mahaboob Basha P, Saumya SM (2013) Suppression of mitochondrial oxidative phosphorylation and TCA enzymes in discrete brain regions of mice exposed to high fluoride: Amelioration by Panax ginseng (Ginseng) and Lagerstroemia speciosa (Banaba) extracts. Cell Mol Neurobiol [Internet]. 33(3):453–64. [cited 2020 Sep 17]. Available from: https://link.springer.com/article/10.1007/s10571-013-9912-0. https://doi.org/10.1007/s10571-013-9912-0

  72. Mahaboob Basha P, Saumya SM (2013) Influence of fluoride on streptozotocin induced diabetic nephrotoxicity in mice: protective role of Asian ginseng (Panax ginseng) & banaba (Lagerstroemia speciosa) on mitochondrial oxidative stress. Indian J Med Res [Internet]. 137(2):370–9. [cited 2020 Sep 17]. Available from: /pmc/articles/PMC3657862/?report=abstract

  73. Nabavi SF, Habtemariam S, Jafari M, Sureda A, Nabavi SM (2012) Protective role of gallic acid on sodium fluoride induced oxidative stress in rat brain. Bull Environ Contam Toxicol [Internet]. 89(1):73–7. [cited 2020 Sep 18]. Available from: https://pubmed.ncbi.nlm.nih.gov/22531840/. https://doi.org/10.1007/s00128-012-0645-4

  74. Nabavi SM, Habtemariam S, Nabavi SF, Sureda A, Daglia M, Moghaddam AH et al (2013) Protective effect of gallic acid isolated from Peltiphyllum peltatum against sodium fluoride-induced oxidative stress in rat’s kidney. Mol Cell Biochem. 372(1–2):233–239. https://doi.org/10.1007/s11010-012-1464-y

    Article  CAS  PubMed  Google Scholar 

  75. Nabavi SF, Habtemariam S, Sureda A, Hajizadeh Moghaddam A, Daglia M, Nabavi SM (2013) In vivo protective effects of gallic acid isolated from peltiphyllum peltatum against sodium fluoride-induced oxidative stress in rat erythrocytes. Arh Hig Rada Toksikol. 64(4):553–559. https://doi.org/10.2478/10004-1254-64-2013-2353

    Article  CAS  PubMed  Google Scholar 

  76. Sinha M, Manna P, Sil PC (2008) Terminalia arjuna protects mouse hearts against sodium fluoride-induced oxidative stress. J Med Food [Internet]. 11(4):733–40. [cited 2020 Sep 18]. Available from: https://pubmed.ncbi.nlm.nih.gov/19053867/. https://doi.org/10.1089/jmf.2007.0130

  77. Sinha M, Manna P, Sil PC (2007) Aqueous extract of the bark of Terminalia arjuna plays a protective role against sodium-fluoride-induced hepatic and renal oxidative stress. J Nat Med [Internet]. 61(3):251–60.’; [cited 2020 Sep 18]. Available from: https://link.springer.com/article/10.1007/s11418-007-0133-z. https://doi.org/10.1007/s11418-007-0133-z

  78. Ghosh J, Das J, Manna P, Sil PC (2008) Cytoprotective effect of arjunolic acid in response to sodium fluoride mediated oxidative stress and cell death via necrotic pathway. Toxicol Vitr. 22(8):1918–1926. https://doi.org/10.1016/j.tiv.2008.09.010

    Article  CAS  Google Scholar 

  79. Nabavi SF, Nabavi SM, Latifi AM, Mirzaei M, Habtemariam S, Moghaddam AH (2012) Mitigating role of quercetin against sodium fluoride-induced oxidative stress in the rat brain. Pharm Biol [Internet]. 50(11):1380–3. [cited 2020 Sep 22]. Available from: https://pubmed.ncbi.nlm.nih.gov/22870923/. https://doi.org/10.3109/13880209.2012.675341

  80. Nabavi SF, Eslami S, Moghaddam AH, Jafari N, Nabavi SM, Ebrahimzadeh MA (2011) Protective effects of quercetin against sodium fluoride-induced oxidative stress in rat erythrocytes. Toxicol Environ Chem [Internet]. 93(8):1666–75. [cited 2020 Sep 22]. Available from: https://www.tandfonline.com/doi/abs/10.1080/02772248.2011.600314. https://doi.org/10.1080/02772248.2011.600314

  81. Nabavi SM, Nabavi SF, Habtemariam S, Moghaddam AH, Latifi AM (2012) Ameliorative effects of quercetin on sodium fluoride-induced oxidative stress in rat’s kidney. Ren Fail. 34(7):901–906. https://doi.org/10.3109/0886022X.2012.687347

    Article  CAS  PubMed  Google Scholar 

  82. Nabavi SMF, Nabavi SMF, Mirzaei M, Moghaddam AH (2012) Protective effect of quercetin against sodium fluoride induced oxidative stress in rat’s heart. Food Funct [Internet]. 3(4):437–41. [cited 2020 Sep 23]. Available from: https://pubs.rsc.org/en/content/articlehtml/2012/fo/c2fo10264a. https://doi.org/10.1039/c2fo10264a

  83. Chouhan S, Yadav A, Kushwah P, Kaul RK, Flora SJS (2011). Silymarin and quercetin abrogates fluoride induced oxidative stress and toxic effects in rats. Mol Cell Toxicol [Internet]. 7(1):25–32. [cited 2020 Sep 26]. Available from: https://link.springer.com/article/10.1007/s13273-011-0004-2. https://doi.org/10.1007/s13273-011-0004-2

  84. Nabavi SM, Nabavi SF, Eslami S, Moghaddam AH (2012) In vivo protective effects of quercetin against sodium fluoride-induced oxidative stress in the hepatic tissue. Food Chem. 132(2):931–935. https://doi.org/10.1016/j.foodchem.2011.11.070

    Article  CAS  Google Scholar 

  85. Mesram N, Nagapuri K, Banala RR, Nalagoni CR, Karnati PR (2017) Quercetin treatment against NaF induced oxidative stress related neuronal and learning changes in developing rats. J King Saud Univ - Sci. 29(2):221–229. https://doi.org/10.1016/j.jksus.2016.04.002

    Article  Google Scholar 

  86. Tian Y, Xiao Y, Wang B, Sun C, Tang K, Sun F (2018) Vitamin E and lycopene reduce coal burning fluorosis-induced spermatogenic cell apoptosis via oxidative stress-mediated JNK and ERK signaling pathways. Biosci Rep [Internet]. 38(4):20171003. [cited 2020 Sep 23]. Available from: /pmc/articles/PMC6066653/?report=abstract. https://doi.org/10.1042/BSR20171003

  87. Mansour HH, Tawfik SS (2012) Efficacy of lycopene against fluoride toxicity in rats. Pharm Biol [Internet]. 50(6):707–11. [cited 2020 Sep 24]. Available from: http://www.tandfonline.com/doi/full/10.3109/13880209.2011.618994. https://doi.org/10.3109/13880209.2011.618994

  88. Nabavi SF, Nabavi SM, Ebrahimzadeh MA, Eslami S, Jafari N, Hajizadeh MA (2011) The protective effect of curcumin against sodium fluoride-induced oxidative stress in rat heart. Arch Biol Sci. 63(3):563–569. https://doi.org/10.2298/ABS1103563N

    Article  Google Scholar 

  89. Nabavi SF, Eslami S, Moghaddam AH, Nabavi SM (2011) Protective effects of curcumin against fluoride-induced oxidative stress in the rat brain. Neurophysiology. 43(4):287–291. https://doi.org/10.1007/s11062-011-9228-y

    Article  CAS  Google Scholar 

  90. Moghaddam AH, Nabavi SF, Nabavi SM, Loizzo MR, Roohbakhsh A, Setzer WN (2015) Ameliorative effects of curcumin against sodium fluoride-induced hepatotoxicity. Prog Nutr. 17(4):324–330

    CAS  Google Scholar 

  91. Sharma C, Suhalka P, Sukhwal P, Jaiswal N, Bhatnagar M (2014) Curcumin attenuates neurotoxicity induced by fluoride: an in vivo evidence. Pharmacogn Mag [Internet]. 10(37):61–5. [cited 2020 Sep 26]. Available from: /pmc/articles/PMC3969660/?report=abstract. https://doi.org/10.4103/0973-1296.126663

  92. Nabavi SM, Nabavi SF, Moghaddam AH, Setzer WN, Mirzaei M (2012) Effect of silymarin on sodium fluoride-induced toxicity and oxidative stress in rat cardiac tissues. An Acad Bras Cienc [Internet]. 84(4):1121–6. [cited 2020 Sep 26]. Available from: https://pubmed.ncbi.nlm.nih.gov/22964841/ .https://doi.org/10.1590/S0001-37652012005000056

  93. Nabavi SM, Sureda A, Nabavi SF, Latifi AM, Moghaddam AH, Hellio C (2012) Neuroprotective effects of silymarin on sodium fluoride-induced oxidative stress. J Fluor Chem. 142:79–82. https://doi.org/10.1016/j.jfluchem.2012.06.029

    Article  CAS  Google Scholar 

  94. Nabavi SM, Nabavi SF, Loizzo MR, Sureda A, Amani MA, Moghaddam AH (2012) Cytoprotective effect of Silymarin against sodium fluoride-induced oxidative stress in rat erythrocytes. Fluoride. 45(1):27–34

    CAS  Google Scholar 

  95. Miltonprabu S, Thangapandiyan S (2015) Epigallocatechin gallate potentially attenuates fluoride induced oxidative stress mediated cardiotoxicity and dyslipidemia in rats. J Trace Elem Med Biol [Internet]. 29:321–35. [cited 2020 Sep 26]. Available from: https://pubmed.ncbi.nlm.nih.gov/25282272/. https://doi.org/10.1016/j.jtemb.2014.08.015

  96. Thangapandiyan S, Miltonprabu S (2015) Epigallocatechin gallate exacerbates fluoride-induced oxidative stress mediated testicular toxicity in rats through the activation of Nrf2 signaling pathway. Asian Pacific J Reprod. 4(4):272–287. https://doi.org/10.1016/j.apjr.2015.07.005

    Article  Google Scholar 

  97. Abdel-Wahab WM (2013) Protective effect of thymoquinone on sodium fluoride-induced hepatotoxicity and oxidative stress in rats. J Basic Appl Zool. 66(5):263–270. https://doi.org/10.1016/j.jobaz.2013.04.002

    Article  CAS  Google Scholar 

  98. Alhusaini AM, Faddah LM, El Orabi NF, Hasan IH (2018) Role of some natural antioxidants in the modulation of some proteins expressions against sodium fluoride-induced renal injury. Biomed Res Int. 2018. https://doi.org/10.1155/2018/5614803

  99. Abou Anza R, Salah EH (2015) Mitigation of fluoride toxicity by the use of thymoquinone in adult male Albino Rat. Ain Shams J Forensic Med Clin Toxicol 24(1):1–10. https://doi.org/10.21608/ajfm.2015.18652

    Article  Google Scholar 

  100. Alhusaini A, Faddaa L, Ali HM, Hassan I, El Orabi NF, Bassiouni Y (2018) Amelioration of the protein expression of Cox2, NF κ B, and STAT-3 by some antioxidants in the liver of sodium fluoride–intoxicated rats. Dose-Response [Internet]. 16(3):155932581880015. [cited 2020 Oct 18]. Available from: http://journals.sagepub.com/doi/10.1177/1559325818800153. https://doi.org/10.1177/1559325818800153

  101. Wang EH, Yu ZL, Ping GF, Zhai DS (2020) Grape seed procyanidin extract attenuate sodium fluoride-induced oxidative damage and apoptosis in rat kidneys [Internet]. Biomed Environ Sci Elsevier Ltd 33:454–7. [cited 2020 Oct 18]. p. . Available from: http://www.besjournal.com/en/article/doi/10.3967/bes2020.061. https://doi.org/10.3967/bes2020.061

  102. Niu Q, Mu L, Li S, Xu S, Ma R, Guo S (2016) Proanthocyanidin protects human embryo hepatocytes from fluoride-induced oxidative stress by regulating iron metabolism. Biol Trace Elem Res [Internet]. 169(2):174–9. [cited 2020 Oct 18]. Available from: https://pubmed.ncbi.nlm.nih.gov/26105545/. https://doi.org/10.1007/s12011-015-0409-1

  103. Niu Q, He P, Xu S, Ma R, Ding Y, Mu L, et al. (2018) Fluoride-induced iron overload contributes to hepatic oxidative damage in mouse and the protective role of Grape seed proanthocyanidin extract. J Toxicol Sci [Internet]. 43(5):311–9. [cited 2020 Oct 18]. Available from: https://pubmed.ncbi.nlm.nih.gov/29743442/. https://doi.org/10.2131/jts.43.311

  104. Eşsiz D, Eraslan G, Altintaş L (2008) Antioxidant and therapeutic efficacy of proanthocyanidin in sodium fluoride-intoxicated mice. Fluoride 41:308–313

  105. Khudiar KK (2015) Effect of grape seed oil on hepatic function in adult male rabbits treated with sodium fluoride (Part-II). Adv Anim Vet Sci 3(10):550–558. https://doi.org/10.14737/journal.aavs/2015/3.10.550.558

    Article  Google Scholar 

  106. Giri A, Bharti VK, Angmo K, Kalia S, Kumar B (2016) Fluoride induced oxidative stress, immune system and apoptosis in animals: a review. Int J Bioassays 5(12):5174. https://doi.org/10.21746/ijbio.2016.12.0011

    Article  CAS  Google Scholar 

  107. Chattopadhyay A, Podder S, Agarwal S, Bhattacharya S (2011) Fluoride-induced histopathology and synthesis of stress protein in liver and kidney of mice. Arch Toxicol [Internet]. 85(4):327–35. [cited 2020 Oct 16];. Available from: https://pubmed.ncbi.nlm.nih.gov/20859737/. https://doi.org/10.1007/s00204-010-0588-7

  108. Wang HW, Zhao WP, Liu J, Tan PP, Zhang C, Zhou BH (2017) Fluoride-induced oxidative stress and apoptosis are involved in the reducing of oocytes development potential in mice. Chemosphere [Internet]. 186:911–8. [cited 2020 Oct 16]. Available from: https://pubmed.ncbi.nlm.nih.gov/28826138/. https://doi.org/10.1016/j.chemosphere.2017.08.068

  109. Chen T, Cui H, Cui Y, Bai C, Gong T (2011) Decreased antioxidase activities and oxidative stress in the spleen of chickens fed on high-fluorine diets. Hum Exp Toxicol [Internet]. 30(9):1282–6. [cited 2020 Oct 16]. Available from: https://pubmed.ncbi.nlm.nih.gov/21071555/. https://doi.org/10.1177/0960327110388538

  110. Wang W, Ji Y, Yang W, Zhang C, Angwa L, Jin B et al (2020) Inhibitors of apoptosis proteins (IAPs) are associated with T-2 toxin-induced decreased collagen II in mouse chondrocytes in vitro. Toxicon. 176:34–43. https://doi.org/10.1016/j.toxicon.2020.01.002

    Article  CAS  PubMed  Google Scholar 

  111. Nguyen Ngoc TD, Son YO, Lim SS, Shi X, Kim JG, Heo JS, et al. (2012) Sodium fluoride induces apoptosis in mouse embryonic stem cells through ROS-dependent and caspase- and JNK-mediated pathways. Toxicol Appl Pharmacol [Internet]. 259(3):329–37. [cited 2020 Oct 16]. Available from: https://pubmed.ncbi.nlm.nih.gov/22285274/. https://doi.org/10.1016/j.taap.2012.01.010

  112. Varol E, Icli A, Aksoy F, Bas HA, Sutcu R, Ersoy IH, et al. (2013) Evaluation of total oxidative status and total antioxidant capacity in patients with endemic fluorosis. Toxicol Ind Health [Internet]. 29(2):175–80. [cited 2020 Oct 16]. Available from: https://pubmed.ncbi.nlm.nih.gov/22155887/. https://doi.org/10.1177/0748233711428641

  113. Manjunath A, Dayanand C, Muninarayana C, Vegi P (2014) Trends on oxidative stress and antioxidant status in fluoride affected areas in Kolar district, India. Int J Adv Med. 1(2):1. https://doi.org/10.5455/2349-3933.ijam20140805

    Article  Google Scholar 

  114. Ravula S, Harinarayan C V., Prasad U V., Ramalakshmi T, Rupungudi A, Madrol V (2012) Effect of fluoride on reactive oxygen species and bone metabolism in postmenopausal women. Fluoride [Internet]. 45(2):108–15. [cited 2020 Oct 16]. Available from: www.ijmse.com

  115. Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta - Molecular Cell Research. Elsevier B.V. 1863:2977–2992. https://doi.org/10.1016/j.bbamcr.2016.09.012

    Article  CAS  Google Scholar 

  116. Ghatage D, Gosavi S, Hazarey V, Ganvir S (2012) Apoptosis: molecular mechanism. J Orofac Sci [Internet] 4(2):103. [cited 2020 Oct 16]. Available from: http://www.jofs.in/text.asp?2012/4/2/103/106199. https://doi.org/10.4103/0975-8844.106199

  117. Song C, Fu B, Zhang J, Zhao J, Yuan M, Peng W, et al. (2017) Sodium fluoride induces nephrotoxicity via oxidative stress-regulated mitochondrial SIRT3 signaling pathway. Sci Rep [Internet]. 7(1):1–15. [cited 2020 Oct 16]. Available from: www.nature.com/scientificreports/. https://doi.org/10.1038/s41598-017-00796-3

  118. Geng Y, Qiu Y, Liu X, Chen X, Ding Y, Liu S et al (2014) Sodium fluoride activates ERK and JNK via induction of oxidative stress to promote apoptosis and impairs ovarian function in rats. J Hazard Mater. 272:75–82. https://doi.org/10.1016/j.jhazmat.2014.03.011

    Article  CAS  PubMed  Google Scholar 

  119. Karube H, Nishitai G, Inageda K, Kurosu H, Matsuoka M (2009) NaF activates MAPKs and induces apoptosis in odontoblast-like cells. J Dent Res [Internet]. 88(5):461–5. [cited 2020 Oct 16]. Available from: https://pubmed.ncbi.nlm.nih.gov/19493891/. https://doi.org/10.1177/0022034509334771

  120. Suzuki M, Bandoski C, Bartlett JD (2015) Fluoride induces oxidative damage and SIRT1/autophagy through ROS-mediated JNK signaling. Free Radic Biol Med [Internet]. 89:369–78. [cited 2020 Oct 16]. Available from: https://pubmed.ncbi.nlm.nih.gov/26431905/. https://doi.org/10.1016/j.freeradbiomed.2015.08.015

  121. Zhao L, Li J, Su J, Snead ML, Ruan J (2016) LS8 cell apoptosis induced by NaF through p-ERK and p-JNK — a mechanism study of dental fluorosis. Acta Odontol Scand [Internet]. 74(7):539–49. [cited 2020 Oct 16]. Available from: https://pubmed.ncbi.nlm.nih.gov/27624793/. https://doi.org/10.1080/00016357.2016.1214980

  122. Refsnes M, Schwarze PE, Holme JA, Låg M (2003) Fluoride-induced apoptosis in human epithelial lung cells (A549 cells): role of different G protein-linked signal systems. Hum Exp Toxicol [Internet]. 22(3):111–23. [cited 2020 Oct 16]. Available from: https://pubmed.ncbi.nlm.nih.gov/12723891/. https://doi.org/10.1191/0960327103ht322oa

  123. Agalakova NI, Gusev GP (2013) Transient activation of protein kinase C contributes to fluoride-induced apoptosis of rat erythrocytes. Toxicol Vitr. 27(8):2335–2341. https://doi.org/10.1016/j.tiv.2013.10.010

    Article  CAS  Google Scholar 

  124. Li Y, Decker S, Yuan ZA, DenBesten PK, Aragon MA, Jordan-Sciutto K et al (2005) Effects of sodium fluoride on the actin cytoskeleton of murine ameloblasts. Arch Oral Biol. 50(8):681–688. https://doi.org/10.1016/j.archoralbio.2004.11.021

    Article  CAS  PubMed  Google Scholar 

  125. Deng H, Kuang P, Cui H, Luo Q, Liu H, Lu Y et al (2017) Sodium fluoride induces apoptosis in mouse splenocytes by activating ROS-dependent NF-κB signaling. Oncotarget 8:114428–114441. https://doi.org/10.18632/oncotarget.22826

    Article  PubMed  PubMed Central  Google Scholar 

  126. Wang J, Xu H, Cheng X, Yang J, Yan Z, Ma H, et al. (2020) Calcium relieves fluoride-induced bone damage through the PI3K/AKT pathway. In: Food and Function [Internet]. Royal Society of Chemistry. [cited 2020 Nov 8]. 11(1):1155–1164. Available from: https://doi.org/10.1039/c9fo02491c

  127. Wu J, Cheng M, Liu Q, Yang J, Wu S, Lu X, et al. (2015) Protective role of tert-butylhydroquinone against sodium fluoride-induced oxidative stress and apoptosis in PC12 cells. Cell Mol Neurobiol [Internet]. 35(7):1017–25. [cited 2020 Nov 8]. Available from: https://pubmed.ncbi.nlm.nih.gov/25911493/. https://doi.org/10.1007/s10571-015-0196-4

  128. Tu W, Zhang Q, Liu Y, Han L, Wang Q, Chen P, et al. (2018) Fluoride induces apoptosis via inhibiting SIRT1 activity to activate mitochondrial p53 pathway in human neuroblastoma SH-SY5Y cells. Toxicol Appl Pharmacol [Internet]. 347:60–9. [cited 2020 Nov 8]. Available from: https://pubmed.ncbi.nlm.nih.gov/29609003/. https://doi.org/10.1016/j.taap.2018.03.030

  129. Anuradha CD, Kanno S, Hirano S (2001) Oxidative damage to mitochondria is a preliminary step to caspase-3 activation in fluoride-induced apoptosis in HL-60 cells. Free Radic Biol Med. 31(3):367–373. https://doi.org/10.1016/S0891-5849(01)00591-3

    Article  CAS  PubMed  Google Scholar 

  130. Song JS, Lee HY, Lee E, Hwang HJ, Kim JH (2002) Cytotoxicity and apoptosis induction of sodium fluoride in human promyelocytic leukemia (HL-60) cells. Environ Toxicol Pharmacol. 11(2):85–91. https://doi.org/10.1016/S1382-6689(01)00108-9

    Article  CAS  PubMed  Google Scholar 

  131. Lee JH, Jung JY, Jeong YJ, Park JH, Yang KH, Choi NK et al (2008) Involvement of both mitochondrial- and death receptor-dependent apoptotic pathways regulated by Bcl-2 family in sodium fluoride-induced apoptosis of the human gingival fibroblasts. Toxicology. 243(3):340–347. https://doi.org/10.1016/j.tox.2007.10.026

    Article  CAS  PubMed  Google Scholar 

  132. Otsuki S, Morshed SRM, Chowdhury SA, Takayama F, Satoh T, Hashimoto K et al (2005) Possible link between glycolysis and apoptosis induced by sodium fluoride. J Dent Res. 84(10):919–923. https://doi.org/10.1177/154405910508401009

    Article  CAS  PubMed  Google Scholar 

  133. Chou R-H, Hsieh S-C, Yu Y-L, Huang M-H, Huang Y-C, Hsieh Y-H (2013) Fisetin inhibits migration and invasion of human cervical cancer cells by down-regulating urokinase plasminogen activator expression through suppressing the p38 MAPK-dependent NF-κB signaling pathway. Ahmad A, editor. PLoS One [Internet]. 8(8):e71983. [cited 2020 Nov 8]. Available from: https://dx.plos.org/10.1371/journal.pone.0071983. https://doi.org/10.1371/journal.pone.0071983

  134. Tesoriere L, Attanzio A, Allegra M, Gentile C, Livrea MA (2013) Phytochemical indicaxanthin suppresses 7-ketocholesterol-induced THP-1 cell apoptosis by preventing cytosolic Ca2+ increase and oxidative stress. Br J Nutr. 110:230–240. https://doi.org/10.1017/S000711451200493X

    Article  CAS  PubMed  Google Scholar 

  135. Vauzour D, Vafeiadou K, Rice-Evans C, Williams RJ, Spencer JPE (2007) Activation of pro-survival Akt and ERK1/2 signalling pathways underlie the anti-apoptotic effects of flavanones in cortical neurons. J Neurochem [Internet]. 103(4):1355–67. [cited 2020 Nov 8]. Available from: https://pubmed.ncbi.nlm.nih.gov/17961201/. https://doi.org/10.1111/j.1471-4159.2007.04841.x

  136. Yan W-J, Liu R-B, Wang L-K, Ma Y-B, Ding S-L, Deng F, et al. (2018) Sirt3-Mediated autophagy contributes to resveratrol-induced protection against ER stress in HT22 cells. Front Neurosci [Internet]. 12:116. [cited 2020 Nov 8]. Available from: http://journal.frontiersin.org/article/10.3389/fnins.2018.00116/full. https://doi.org/10.3389/fnins.2018.00116

  137. Hannan MA, Dash R, Sohag AAM, Haque MN, Moon IS (2020) Neuroprotection against oxidative stress: phytochemicals targeting TrkB signaling and the Nrf2-ARE antioxidant system [Internet]. Front Mol Neurosci. Frontiers Media S.A. 13:116. [cited 2020 Nov 8]. Available from: www.frontiersin.org. https://doi.org/10.3389/fnmol.2020.00116

  138. Shi N, Chen F, Zhang X, Clinton SK, Tang X, Sun Z, et al. (2017) Suppression of oxidative stress and NFκB/MAPK signaling by lyophilized black raspberries for esophageal cancer prevention in rats. Nutrients [Internet]. 9(4):413. [cited 2020 Nov 8]. Available from: /pmc/articles/PMC5409752/?report=abstract 10.3390/nu9040413

  139. Zhai X, Lin M, Zhang F, Hu Y, Xu X, Li Y, et al. (2013) Dietary flavonoid genistein induces Nrf2 and phase II detoxification gene expression via ERKs and PKC pathways and protects against oxidative stress in Caco-2 cells. Mol Nutr Food Res [Internet]. 57(2):249–59. [cited 2020 Nov 8]. Available from: http://doi.wiley.com/10.1002/mnfr.201200536. https://doi.org/10.1002/mnfr.201200536

  140. Meng D, Zhang P, Li S, Ho CT, Zhao H (2017) Antioxidant activity evaluation of dietary phytochemicals using Saccharomyces cerevisiae as a model. J Funct Foods. 38:36–44. https://doi.org/10.1016/j.jff.2017.08.041

  141. Kuru P (2014) Tamarindus indica and its health related effects [Internet]. Asian Pac J Trop Biomed. Asian Pacific Tropical Biomedicine Press 4:676–81 [cited 2020 Sep 13]. Available from: https://www.sciencedirect.com/science/article/pii/S2221169115300885. https://doi.org/10.12980/APJTB.4.2014APJTB-2014-0173

  142. Havinga RM, Hartl A, Putscher J, Prehsler S, Buchmann C, Vogl CR (2010) Tamarindus indica L. (Fabaceae): patterns of use in traditional African medicine. Journal of Ethnopharmacology. Elsevier 127:573–588. https://doi.org/10.1016/j.jep.2009.11.028

    Article  Google Scholar 

  143. Murugan M, Subramanian E (2006) Studies on defluoridation of water by Tamarind seed, an unconventional biosorbent. J Water Health [Internet]. 4(4):453–61. [cited 2020 Sep 14]. Available from: http://iwaponline.com/jwh/article-pdf/4/4/453/396531/453.pdf. https://doi.org/10.2166/wh.2006.0029

  144. Kumar NP, Kumar NS, Krishnaiah A (2012) Defluoridation of water using Tamarind (tamarindus indica) fruit Cover: kinetics and equilibrium studies. J Chil Chem Soc [Internet]. 57(3):1224–31. [cited 2020 Sep 14]. Available from: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0717-97072012000300006&lng=es&nrm=iso&tlng=en. https://doi.org/10.4067/S0717-97072012000300006

  145. Ranjan R, Swarup D, Patra RC, Chandra V (2009) Tamarindus indica L. and moringa oleifera m. extract administration ameliorates fluoride toxicity in rabbits. Indian J Exp Biol [Internet]. 47(11):900–905 Available from: https://www.researchgate.net/publication/41137780_Tamarindus_indica_L_and_Moringa_oleifera_M_extract_administration_ameliorates_fluoride_toxicity_in_rabbits

    CAS  PubMed  Google Scholar 

  146. Dey S, Swarup D, Saxena A, Dan A (2011) In vivo efficacy of tamarind (Tamarindus indica) fruit extract on experimental fluoride exposure in rats. Res Vet Sci [Internet]. 91(3):422–5 [cited 2020 Sep 14]. Available from: https://pubmed.ncbi.nlm.nih.gov/20980037/. https://doi.org/10.1016/j.rvsc.2010.09.013

  147. Sudjaroen Y, Haubner R, Würtele G, Hull WE, Erben G, Spiegelhalder B et al (2005) Isolation and structure elucidation of phenolic antioxidants from Tamarind (Tamarindus indica L.) seeds and pericarp. Food Chem Toxicol. 43(11):1673–1682. https://doi.org/10.1016/j.fct.2005.05.013

    Article  CAS  PubMed  Google Scholar 

  148. Khandare AL, Rao GS, Lakshmaiah N (2002) Effect of tamarind ingestion on fluoride excretion in humans. Eur J Clin Nutr [Internet]. 56(1):82–5. [cited 2020 Sep 14]. Available from: https://www.nature.com/articles/1601287. https://doi.org/10.1038/sj.ejcn.1601287

  149. Bowen-Forbes CS, Zhang Y, Nair MG (2010) Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. J Food Compos Anal. 23:554–560. https://doi.org/10.1016/j.jfca.2009.08.012

    Article  CAS  Google Scholar 

  150. U.S. Department of Agriculture (2019) Agricultural Research Service. FoodData Central [Internet]. FoodData Central. Blackberries, raw. [cited 2020 Sep 14]. p. fdc.nal.usda.gov. Available from: https://fdc.nal.usda.gov/fdc-app.html#/food-details/786757/nutrients

  151. Khoo HE, Azlan A, Tang ST, Lim SM (2017) Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits [Internet]. Food Nutr Res Swedish Nutrition Foundation 61:1361779. [cited 2020 Sep 15]. Available from: /pmc/articles/PMC5613902/?report=abstract. https://doi.org/10.1080/16546628.2017.1361779

  152. Cervoni B (2020) Blackberry Nutrition Facts and Health Benefits [Internet]. [cited 2020 Sep 14]. Available from: https://www.verywellfit.com/blackberry-nutrition-facts-calories-and-health-benefits-4109221

  153. Kähkönen MP, Hopia AI, Heinonen M (2001) Berry phenolics and their antioxidant activity. J Agric Food Chem [Internet] 49(8):4076–4082. Available from:. https://doi.org/10.1021/jf010152t10.1021/jf010152t

  154. Heinonen M (2007) Antioxidant activity and antimicrobial effect of berry phenolics — a Finnish perspective. Mol Nutr Food Res. 51(6):684–691. https://doi.org/10.1002/mnfr.200700006

    Article  CAS  PubMed  Google Scholar 

  155. Paredes-López O, Cervantes-Ceja ML, Vigna-Pérez M, Hernández-Pérez T (2010) Berries: Improving human health and healthy aging, and promoting quality life—a review. Plant Foods Hum Nutr [Internet]. 65(3):299–308. Available from: https://www.researchgate.net/publication/45276258_Berries_Improving_Human_Health_and_Healthy_Aging_and_Promoting_Quality_Life-A_Review. https://doi.org/10.1007/s11130-010-0177-1

    Article  CAS  PubMed  Google Scholar 

  156. Zhang H, Zhang H, Abid S, Ahn JC, Mathiyalagan R, Kim YJ, et al. (2020) Characteristics of Panax ginseng cultivars in Korea and China [Internet]. Molecules. MDPI AG 25:25 [cited 2020 Sep 15]x. Available from: /pmc/articles/PMC7321059/?report=abstract. https://doi.org/10.3390/molecules25112635

  157. Kim YJ, Zhang D, Yang DC (2015) Biosynthesis and biotechnological production of ginsenosides [Internet]. Biotechnol Adv Elsevier Inc. 33:717–35 [cited 2020 Sep 15]. Available from: https://pubmed.ncbi.nlm.nih.gov/25747290/. https://doi.org/10.1016/j.biotechadv.2015.03.001

  158. Fernández-Moriano C, González-Burgos E, Iglesias I, Lozano R, Gómez-Serranillos MP (2017) Evaluation of the adaptogenic potential exerted by ginsenosides Rb1 and Rg1 against oxidative stress-mediated neurotoxicity in an in vitro neuronal model. PLoS One [Internet]. 12(8):e0182933 [cited 2020 Sep 16]. Available from: /pmc/articles/PMC5558939/?report=abstract. https://doi.org/10.1371/journal.pone.0182933

  159. Yao F, Xue Q, Li K, Cao X, Sun L, Liu Y (2019) Phenolic compounds and ginsenosides in ginseng shoots and their antioxidant and anti-inflammatory capacities in lps-induced raw264.7 mouse macrophages. Int J Mol Sci [Internet]. 20(12):2951. [cited 2020 Sep 16]. Available from: /pmc/articles/PMC6627944/?report=abstract. https://doi.org/10.3390/ijms20122951

  160. Shen CY, Jiang JG, Yang L, Wang DW, Zhu W (2017) Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: pharmacological mechanisms and implications for drug discovery. Br J Pharmacol. 174(11):1395–1425. https://doi.org/10.1111/bph.13631

    Article  CAS  PubMed  Google Scholar 

  161. Choi KS, Song H, Kim EH, Choi JH, Hong H, Han YM et al (2012) Inhibition of hydrogen sulfide-induced angiogenesis and inflammation in vascular endothelial cells: Potential mechanisms of gastric cancer prevention by Korean red ginseng. J Ginseng Res. 36(2):135–145. https://doi.org/10.5142/jgr.2012.36.2.135

    Article  PubMed  PubMed Central  Google Scholar 

  162. Jin TY, Rong PQ, Liang HY, Zhang PP, Zheng GQ, Lin Y (2020) Clinical and preclinical systematic review of Panax ginseng C. A. mey and its compounds for fatigue. Front Pharmacol [Internet]. 11:1031. [cited 2020 Sep 16]. Available from: /pmc/articles/PMC7379339/?report=abstract. https://doi.org/10.3389/fphar.2020.01031

  163. Mancuso C, Santangelo R (2017) Panax ginseng and Panax quinquefolius: from pharmacology to toxicology. Food Chem Toxicol [Internet]. 107:362. [cited 2020 Sep 16]. Available from: /pmc/articles/PMC7116968/?report=abstract. https://doi.org/10.1016/J.FCT.2017.07.019

  164. Lee YM, Yoon H, Park HM, Song BC, Yeum KJ (2017) Implications of red Panax ginseng in oxidative stress associated chronic diseases [Internet]. J Ginseng Res Elsevier B.V. 41:113–9. [cited 2020 Sep 17]. Available from: /pmc/articles/PMC5386131/?report=abstract. https://doi.org/10.1016/j.jgr.2016.03.003

  165. Bak MJ, Jun M, Jeong WS (2012) Antioxidant and hepatoprotective effects of the red ginseng essential oil in H 2O 2-treated HepG2 cells and CCL 4-treated mice. Int J Mol Sci [Internet]. 13(2):2314–30. [cited 2020 Sep 17]. Available from: /pmc/articles/PMC3292025/?report=abstract. https://doi.org/10.3390/ijms13022314

  166. Park HM, Kim SJ, Mun AR, Go HK, Kim GB, Kim SZ, et al. 2012 Korean red ginseng and its primary ginsenosides inhibit ethanol-induced oxidative injury by suppression of the MAPK pathway in TIB-73 cells. J Ethnopharmacol [Internet]. 141(3):1071–6. [cited 2020 Sep 17]. Available from: https://pubmed.ncbi.nlm.nih.gov/22472111/. https://doi.org/10.1016/j.jep.2012.03.038

  167. Park SH, Jang JH, Chen CY, Na HK, Surh YJ (2010) A formulated red ginseng extract rescues PC12 cells from PCB-induced oxidative cell death through Nrf2-mediated upregulation of heme oxygenase-1 and glutamate cysteine ligase. Toxicology [Internet]. 278(1):131–9. [cited 2020 Sep 17]. Available from: https://pubmed.ncbi.nlm.nih.gov/20399244/. https://doi.org/10.1016/j.tox.2010.04.003

  168. Choubey S, Varughese LRache, Kumar V, Beniwal V (2015) Medicinal importance of gallic acid and its ester derivatives: a patent review [Internet]. Pharm Patent Anal Pharm Pat Anal 4:305–15. [cited 2020 Sep 18]. Available from: https://pubmed.ncbi.nlm.nih.gov/26174568/. https://doi.org/10.4155/ppa.15.14

  169. Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Naseri R, et al. (2019) Pharmacological effects of gallic acid in health and disease: a mechanistic review. Iran J Basic Med Sci [Internet]. 22(3):225–37. [cited 2020 Sep 18]. Available from: /pmc/articles/PMC6528712/?report=abstract. https://doi.org/10.22038/ijbms.2019.32806.7897

  170. Badhani B, Sharma N, Kakkar R (2015) Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Adv [Internet]. 5(35):27540–57. [cited 2020 Sep 18]. Available from: https://pubs.rsc.org/en/content/articlehtml/2015/ra/c5ra01911g. 10.1039/c5ra01911g

  171. Gao J, Hu J, Hu D, Yang X (2019) A role of gallic acid in oxidative damage diseases: a comprehensive review. Nat Prod Commun [Internet]. 14(8):1934578X1987417. [cited 2020 Sep 18]. Available from: http://journals.sagepub.com/doi/10.1177/1934578X19874174. https://doi.org/10.1177/1934578X19874174

  172. Kongpichitchoke T, Chiu MT, Huang TC, Hsu JL (2016) Gallic acid content in taiwanese teas at different degrees of fermentation and its antioxidant activity by inhibiting pkcδ activation: In vitro and in silico studies. Molecules [Internet]. 21(10):1346. [cited 2020 Sep 18]. Available from: /pmc/articles/PMC6273586/?report=abstract. https://doi.org/10.3390/molecules21101346

  173. Scassellati-Sforzolini G, Villarini M, Moretti M, Marcarelli M, Pasquini R, Fatigoni C et al (1999) Antigenotoxic properties of Terminalia arjuna bark extracts. J Environ Pathol Toxicol Oncol. 18(2):119–125

    CAS  PubMed  Google Scholar 

  174. Amalraj A, Gopi S (2017) Medicinal properties of Terminalia arjuna (Roxb.) Wight & Arn.: A review [Internet]. J Tradit Complement Med National Taiwan University 7:65–78. [cited 2020 Sep 18]. Available from: /pmc/articles/PMC5198828/?report=abstract. https://doi.org/10.1016/j.jtcme.2016.02.003

  175. Ramya EM, Kumar GP, Anand T, Anilakumar KR (2017) Modulatory effects of Terminalia arjuna against domoic acid induced toxicity in Caco-2 cell line. Cytotechnology [Internet]. 69(4):725–39. [cited 2020 Sep 19]. Available from: /pmc/articles/PMC5507850/?report=abstract. https://doi.org/10.1007/s10616-017-0080-9

  176. Gupta R, Singhal S, Goyle A, Sharma VN (2001) Antioxidant and hypocholesterolaemic effects of Terminalia arjuna tree-bark powder: a randomised placebo-controlled trial. J Assoc Physicians India. 49:231–235

    CAS  PubMed  Google Scholar 

  177. Subramaniam S, Ramachandran S, Uthrapathi S, Gnamanickam VR, Dubey GP (2011) Anti-hyperlipidemic and antioxidant potential of different fractions of Terminalia arjuna Roxb. bark against PX-407 induced hyperlipidemia. Indian J Exp Biol. 49(4):282–288

    PubMed  Google Scholar 

  178. Kumar S, Enjamoori R, Jaiswal A, Ray R, Seth S, Maulik SK (2009) Catecholamine-induced myocardial fibrosis and oxidative stress is attenuated by <I>Terminalia arjuna</I> (Roxb.). J Pharm Pharmacol [Internet] 61(11):1529–36. [cited 2020 Sep 18]. Available from: https://pubmed.ncbi.nlm.nih.gov/19903379/. https://doi.org/10.1211/jpp/61.11.0013

  179. Mandal S, Patra A, Samanta A, Roy S, Mandal A, Mahapatra T Das, et al. (2013) Analysis of phytochemical profile of Terminalia arjuna bark extract with antioxidative and antimicrobial properties. Asian Pac J Trop Biomed [Internet]. 3(12):960–6. [cited 2020 Sep 18]. Available from: /pmc/articles/PMC3805097/?report=abstract. https://doi.org/10.1016/S2221-1691(13)60186-0

  180. Manu TM, Anand T, Pandareesh MD, Kumar PB, Khanum F (2019) Terminalia arjuna extract and arjunic acid mitigate cobalt chloride–induced hypoxia stress–mediated apoptosis in H9c2 cells. Naunyn Schmiedebergs Arch Pharmacol. 392(9):1107–1119. https://doi.org/10.1007/s00210-019-01654-x

    Article  CAS  PubMed  Google Scholar 

  181. Ghosh J, Das J, Manna P, Sil PC (2010) Protective effect of the fruits of Terminalia arjuna against cadmium-induced oxidant stress and hepatic cell injury via MAPK activation and mitochondria dependent pathway. Food Chem. 123(4):1062–1075. https://doi.org/10.1016/j.foodchem.2010.05.062

    Article  CAS  Google Scholar 

  182. Thangaraju MM, Tamatam A, Bhat P V., Deshetty UM, Babusha ST, Khanum F (2020) Terminalia arjuna extract attenuates isoproterenol-induced cardiac stress in Wistar rats via an anti-apoptotic pathway. Proc Natl Acad Sci India Sect B - Biol Sci [Internet]. 1–12. [cited 2020 Sep 19]. Available from: https://link.springer.com/article/10.1007/s40011-020-01180-4. https://doi.org/10.1007/s40011-020-01180-4

  183. Lakhanpal P, Rai DK (2007) Quercetin: a versatile flavonoid. Internet J Med Updat - EJOURNAL [Internet]. 2(2). [cited 2020 Sep 22]. Available from: https://www.akspublication.com/paper05_jul-dec2007.htm. https://doi.org/10.4314/ijmu.v2i2.39851

  184. Costa LG, Garrick JM, Roquè PJ, Pellacani C (2016) Mechanisms of neuroprotection by quercetin: counteracting oxidative stress and more, vol 2016. Oxidative Medicine and Cellular Longevity. Hindawi Limited. https://doi.org/10.1155/2016/2986796

  185. El-Saber Batiha G, Beshbishy AM, Ikram M, Mulla ZS, Abd El-Hack ME, Taha AE, et al. (2020) The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin [Internet]. Foods. MDPI Multidisciplinary Digital Publishing Institute 9:374 [cited 2020 Sep 23]. Available from: /pmc/articles/PMC7143931/?report=abstract. https://doi.org/10.3390/foods9030374

  186. Anand David AV, Arulmoli R, Parasuraman S (2016) Overviews of biological importance of quercetin: a bioactive flavonoid [Internet]. Pharmacognosy Reviews. Medknow Publications 10:84–9 [cited 2020 Sep 22]. Available from: /pmc/articles/PMC5214562/?report=abstract. https://doi.org/10.4103/0973-7847.194044

  187. Denny Joseph KM, Muralidhara (2013) Enhanced neuroprotective effect of fish oil in combination with quercetin against 3-nitropropionic acid induced oxidative stress in rat brain. Prog Neuro-Psychopharmacology Biol Psychiatry [Internet] 40(1):83–92. [cited 2020 Sep 22]. Available from: https://pubmed.ncbi.nlm.nih.gov/22960609/. https://doi.org/10.1016/j.pnpbp.2012.08.018

  188. Bao D, Wang J, Pang X, Liu H (2017) Protective effect of quercetin against oxidative stress-induced cytotoxicity in rat pheochromocytoma (PC-12) cells. Molecules [Internet] 22(7):1122. [cited 2020 Sep 22]. Available from: https://pubmed.ncbi.nlm.nih.gov/28684704/. https://doi.org/10.3390/molecules22071122

  189. Boots AW, Drent M, de Boer VCJ, Bast A, Haenen GRMM (2011) Quercetin reduces markers of oxidative stress and inflammation in sarcoidosis. Clin Nutr. 30(4):506–512. https://doi.org/10.1016/j.clnu.2011.01.010

    Article  CAS  PubMed  Google Scholar 

  190. Kook D, Wolf AH, Yu AL, Neubauer AS, Priglinger SG, Kampik A et al (2008) The protective effect of quercetin against oxidative stress in the human RPE in vitro. Investig Ophthalmol Vis Sci. 49(4):1712–1720. https://doi.org/10.1167/iovs.07-0477

    Article  Google Scholar 

  191. Afanas’ev IB, Dcrozhko AI, Brodskii A V., Kostyuk VA, Potapovitch AI (1989) Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem Pharmacol [Internet]. 38(11):1763–9. [cited 2020 Sep 23]. Available from: https://pubmed.ncbi.nlm.nih.gov/2735934/. https://doi.org/10.1016/0006-2952(89)90410-3

  192. Ferrali M, Signorini C, Caciotti B, Sugherini L, Ciccoli L, Giachetti D, et al. (1997) Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity. FEBS Lett [Internet]. 416(2):123–9. [cited 2020 Sep 23]. Available from: http://doi.wiley.com/10.1016/S0014-5793%2897%2901182-4. https://doi.org/10.1016/S0014-5793(97)01182-4

  193. Sorata Y, Takahama U, Kimura M (1984) Protective effect of quercetin and rutin on photosensitized lysis of human erythrocytes in the presence of hematoporphyrin. BBA - Gen Subj [Internet]. 799(3):313–7. [cited 2020 Sep 23]. Available from: https://pubmed.ncbi.nlm.nih.gov/6733152/. https://doi.org/10.1016/0304-4165(84)90276-9

  194. Shoskes D, Lapierre C, Cruz-Corerra M, Muruve N, Rosario R, Fromkin B et al (2005) Beneficial effects of the bioflavonoids curcumin and quercetin on early function in cadaveric renal transplantation: a randomized placebo controlled trial. Transplantation. 80(11):1556–1559. https://doi.org/10.1097/01.tp.0000183290.64309.21

    Article  CAS  PubMed  Google Scholar 

  195. Nagao A, Seki M, Kobayashi H (1999) Inhibition of xanthine oxidase by flavonoids. Biosci Biotechnol Biochem [Internet]. 63(10):1787–90. [cited 2020 Sep 23]. Available from: https://www.tandfonline.com/action/journalInformation?journalCode=tbbb20. https://doi.org/10.1271/bbb.63.1787

  196. Iio M, Ono Y, Kai S, Fukumoto M (1986) Effects of Flavonoids on xanthine oxidation as well as on cytochrome c reduction by milk xanthine oxidase. J Nutr Sci Vitaminol (Tokyo) [Internet]. 32(6):635–42. [cited 2020 Sep 23]. Available from: https://pubmed.ncbi.nlm.nih.gov/3035152/. https://doi.org/10.3177/jnsv.32.635

  197. Karabulut E, Otlu O, Pakdemirli A, Yarım M, Salt A, Cenesiz S. The effects of quercetin on the fluorosis toxicity in kidney of mice. 2019.

    Google Scholar 

  198. Colunga Biancatelli RML, Berrill M, Catravas JD, Marik PE (2020) Quercetin and vitamin C: an experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 Related Disease (COVID-19) [Internet]. Front Immunol Frontiers Media S.A. 11:1451. [cited 2020 Sep 23]. Available from: www.frontiersin.org. https://doi.org/10.3389/fimmu.2020.01451

  199. Dias AS, Porawski M, Alonso M, Marroni N, Collado PS, González-Gallego J (2005) Quercetin decreases oxidative stress, NF-κB activation, and iNOS overexpression in liver of streptozotocin-induced diabetic rats. J Nutr. 135(10):2299–2304. https://doi.org/10.1093/jn/135.10.2299

    Article  CAS  PubMed  Google Scholar 

  200. Sánchez-González P, López-Hernández FJ, Prierto M, Vicente-Vicente L, López-Novoa JM, Morales AI (2010) Renoprotective effects of quercetin on cisplatin-induced nephrotoxicity. Role of TNF-alpha, NF-kappaB and iNOS. Toxicol Lett [Internet]. 196(196):S242. [cited 2020 Sep 23]. Available from: https://www.infona.pl//resource/bwmeta1.element.elsevier-3a243135-2be6-3e14-9e30-e4114bd312e6. https://doi.org/10.1016/j.toxlet.2010.03.809

  201. National Center for Biotechnology Information (n.d.). PubChem Compound Summary for CID 446925, Lycopene. [Internet]. [cited 2020 Sep 23]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Lycopene

  202. Juturu V (2013) Polyphenols and cardiometabolic syndrome. In: Polyphenols in Human Health and Disease. Elsevier Inc., pp 1067–1076. https://doi.org/10.1016/B978-0-12-398456-2.00082-7

  203. Hedayati N, Naeini MB, Nezami A, Hosseinzadeh H, Wallace Hayes A, Hosseini S, et al. (2019) Protective effect of lycopene against chemical and natural toxins: a review [Internet]. BioFactors. Blackwell Publishing Inc. 45:5–23. [cited 2020 Sep 23]. Available from: https://pubmed.ncbi.nlm.nih.gov/30339717/. https://doi.org/10.1002/biof.1458

  204. Przybylska S (2020) Lycopene – a bioactive carotenoid offering multiple health benefits: a review. Int J Food Sci Technol [Internet]. 55(1):11–32. [cited 2020 Sep 23]. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/ijfs.14260. https://doi.org/10.1111/ijfs.14260

  205. Mozos I, Stoian D, Caraba A, Malainer C, Horbanczuk JO, Atanasov AG (2018) Lycopene and vascular health [Internet]. Front Pharmacol Frontiers Media S.A. 9:521. [cited 2020 Sep 23]. Available from: /pmc/articles/PMC5974099/?report=abstract. https://doi.org/10.3389/fphar.2018.00521

  206. Zhu R, Chen B, Bai Y, Miao T, Rui L, Zhang H, et al (2020) Lycopene in protection against obesity and diabetes: a mechanistic review. Pharmacol Res 159:104966. https://doi.org/10.1016/j.phrs.2020.104966

  207. Story EN, Kopec RE, Schwartz SJ, Keith Harris G (2010) An update on the health effects of tomato lycopene. Annu Rev Food Sci Technol [Internet]. 1(1):189–210. [cited 2020 Sep 23]. Available from: /pmc/articles/PMC3850026/?report=abstract. https://doi.org/10.1146/annurev.food.102308.124120

  208. Yue R, Hu H, Yiu KH, Luo T, Zhou Z, Xu L, et al. 2012 Lycopene protects against hypoxia/reoxygenation-induced apoptosis by preventing mitochondrial dysfunction in primary neonatal mouse cardiomyocytes. Gallyas F, editor. PLoS One [Internet]. 7(11):e50778. [cited 2020 Sep 23];. Available from: https://dx.plos.org/10.1371/journal.pone.0050778. https://doi.org/10.1371/journal.pone.0050778

  209. Goncu T, Oğuz E, Sezen H, Koçarslan S, Oğuz H, Akal A, et al. (2016) Anti-inflammatory effect of lycopene on endotoxin-induced uveitis in rats. Arq Bras Oftalmol [Internet]. 79(6):357–62. [cited 2020 Sep 23]. Available from: https://pubmed.ncbi.nlm.nih.gov/28076559/. https://doi.org/10.5935/0004-2749.20160102

  210. Chernyshova MP, Pristenskiy DV, Lozbiakova MV, Chalyk NE, Bandaletova TY, Petyaev IM (2019) Systemic and skin-targeting beneficial effects of lycopene-enriched ice cream: A pilot study. J Dairy Sci [Internet] 102(1):14–25. [cited 2020 Sep 23]. Available from. https://doi.org/10.3168/jds.2018-15282

    Article  CAS  Google Scholar 

  211. Grether-Beck S, Marini A, Jaenicke T, Stahl W, Krutmann J (2017) Molecular evidence that oral supplementation with lycopene or lutein protects human skin against ultraviolet radiation: results from a double-blinded, placebo-controlled, crossover study. Br J Dermatol [Internet]. 176(5):1231–40. [cited 2020 Sep 23]. Available from: http://doi.wiley.com/10.1111/bjd.15080. https://doi.org/10.1111/bjd.15080

  212. Russo C, Ferro Y, Maurotti S, Salvati MA, Mazza E, Pujia R, et al. (2020) Lycopene and bone: an in vitro investigation and a pilot prospective clinical study. J Transl Med [Internet]. 18(1):43. [cited 2020 Sep 23]. Available from: https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-020-02238-7. https://doi.org/10.1186/s12967-020-02238-7

  213. Jiang W, Guo MH, Hai X (2016) Hepatoprotective and antioxidant effects of lycopene on non-alcoholic fatty liver disease in rat. World J Gastroenterol [Internet]. 22(46):10180–8. [cited 2020 Sep 23]. Available from: /pmc/articles/PMC5155177/?report=abstract. https://doi.org/10.3748/wjg.v22.i46.10180

  214. Chen D, Huang C, Chen Z (2019) A review for the pharmacological effect of lycopene in central nervous system disorders. Biomedicine and Pharmacotherapy. Elsevier Masson SAS 111:791–801. https://doi.org/10.1016/j.biopha.2018.12.151

    Article  CAS  Google Scholar 

  215. Durairajanayagam D, Agarwal A, Ong C, Prashast P (2014) Lycopene and male infertility [Internet]. Asian J Androl Medknow Publications. 16:420–5 [cited 2020 Sep 23]. Available from: /pmc/articles/PMC4023371/?report=abstract. https://doi.org/10.4103/1008-682X.126384

  216. Zhao B, Ren B, Guo R, Zhang W, Ma S, Yao Y, et al. (2017) Supplementation of lycopene attenuates oxidative stress induced neuroinflammation and cognitive impairment via Nrf2/NF-κB transcriptional pathway. Food Chem Toxicol [Internet]. 109(Pt 1):505–16. [cited 2020 Sep 23]. Available from: https://pubmed.ncbi.nlm.nih.gov/28974442/. https://doi.org/10.1016/j.fct.2017.09.050

  217. Bandeira ACB, da Silva TP, de Araujo GR, Araujo CM, da Silva RC, Lima WG, et al. (2017) Lycopene inhibits reactive oxygen species production in SK-Hep-1 cells and attenuates acetaminophen-induced liver injury in C57BL/6 mice. Chem Biol Interact [Internet]. 263:7–17. [cited 2020 Sep 23]. Available from: https://pubmed.ncbi.nlm.nih.gov/27989599/. https://doi.org/10.1016/j.cbi.2016.12.011

  218. Xu XY, Meng X, Li S, Gan RY, Li Y, Li H Bin (2018) Bioactivity, health benefits, and related molecular mechanisms of curcumin: current progress, challenges, and perspectives [Internet]. Nutrients. MDPI AG. 10:1553. [cited 2020 Oct 13]. Available from: /pmc/articles/PMC6213156/?report=abstract. https://doi.org/10.3390/nu10101553

  219. Pulido-Moran M, Moreno-Fernandez J, Ramirez-Tortosa C, Ramirez-Tortosa MC (2016) Curcumin and health [Internet]. Molecules. MDPI AG. 21:264. [cited 2020 Oct 13]. Available from: /pmc/articles/PMC6273481/?report=abstract. https://doi.org/10.3390/molecules21030264

  220. Tomeh MA, Hadianamrei R, Zhao X (2019) A review of curcumin and its derivatives as anticancer agents [Internet]. Int J Mol Sci MDPI AG. 20:1033. [cited 2020 Oct 13]. Available from: /pmc/articles/PMC6429287/?report=abstract. https://doi.org/10.3390/ijms20051033

  221. Grama CN, Suryanarayana P, Patil MA, Raghu G, Balakrishna N, Ravi Kumar MNV, et al. (2013) Efficacy of biodegradable curcumin nanoparticles in delaying cataract in diabetic rat model. PLoS One [Internet]. 8(10):e78217. [cited 2020 Oct 13]. Available from: https://pubmed.ncbi.nlm.nih.gov/24155984/. https://doi.org/10.1371/journal.pone.0078217

  222. Wu J, Li Q, Wang X, Yu S, Li L, Wu X, et al. (2013) Neuroprotection by Curcumin in ischemic brain injury involves the Akt/Nrf2 pathway. PLoS One [Internet]. 8(3):e59843. [cited 2020 Oct 13]. Available from: https://pubmed.ncbi.nlm.nih.gov/23555802/. https://doi.org/10.1371/journal.pone.0059843

  223. Suryanarayana P, Satyanarayana A, Balakrishna N, Kumar PU, Bhanuprakash RG (2007) Effect of turmeric and curcumin on oxidative stress and antioxidant enzymes in streptozotocin-induced diabetic rat. Med Sci Monit. 13(12):BR286–BR292

    CAS  PubMed  Google Scholar 

  224. Burge K, Gunasekaran A, Eckert J, Chaaban H (2019) Curcumin and intestinal inflammatory diseases: molecular mechanisms of protection. Int J Mol Sci [Internet]. 20(8):1912. [cited 2020 Oct 13]. Available from: /pmc/articles/PMC6514688/?report=abstract. https://doi.org/10.3390/ijms20081912

  225. Jagetia GC, Aggarwal BB (2007) “Spicing up” of the immune system by curcumin [Internet]. Journal of Clinical Immunology. Springer. 27:19–35. [cited 2020 Oct 13]. Available from: https://link.springer.com/article/10.1007/s10875-006-9066-7. https://doi.org/10.1007/s10875-006-9066-7

  226. Dai C, Tang S, Li D, Zhao K, Xiao X (2015) Curcumin attenuates quinocetone-induced oxidative stress and genotoxicity in human hepatocyte L02 cells. Toxicol Mech Methods [Internet]. 25(4):340–6. [cited 2020 Oct 13]. Available from: https://www.tandfonline.com/doi/abs/10.3109/15376516.2015.1045659. https://doi.org/10.3109/15376516.2015.1045659

  227. Khurana S, Venkataraman K, Hollingsworth A, Piche M, Tai TC (2013) Polyphenols: benefits to the cardiovascular system in health and in aging [Internet]. Nutrients. MDPI AG. 5:3779–827. [cited 2020 Oct 13]. Available from: /pmc/articles/PMC3820045/?report=abstract. https://doi.org/10.3390/nu5103779

  228. Li Y, Li J, Li S, Li Y, Wang X, Liu B, et al. (2015) Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK. Toxicol Appl Pharmacol [Internet]. 286(1):53–63. [cited 2020 Oct 13]. Available from: https://pubmed.ncbi.nlm.nih.gov/25791922/. https://doi.org/10.1016/j.taap.2015.03.010

  229. Fu X Yan, Yang M Feng, Cao M Zhi, Li D Wei, Yang X Yi, Sun J Yi, et al. (2016) Strategy to suppress oxidative damage-induced neurotoxicity in PC12 cells by curcumin: the role of ROS-mediated DNA damage and the MAPK and AKT pathways. Mol Neurobiol [Internet]. 53(1):369–78. [cited 2020 Oct 13]. Available from: https://link.springer.com/article/10.1007/s12035-014-9021-1. https://doi.org/10.1007/s12035-014-9021-1

  230. Pulla Reddy AC, Lokesh BR (1994) Effect of dietary turmeric (curcuma longa) on iron-induced lipid peroxidation in the rat liver. Food Chem Toxicol [Internet]. 32(3):279–83. [cited 2020 Oct 13]. Available from: https://pubmed.ncbi.nlm.nih.gov/8157223/. https://doi.org/10.1016/0278-6915(94)90201-1

  231. Sökmen M, Akram Khan M (2016) The antioxidant activity of some curcuminoids and chalcones. Inflammopharmacology [Internet]. 24(2–3):81–6. [cited 2020 Oct 13];. Available from: /pmc/articles/PMC4883448/?report=abstract. https://doi.org/10.1007/s10787-016-0264-5

  232. Priyadarsini KI, Maity DK, Naik GH, Kumar MS, Unnikrishnan MK, Satav JG et al (2003) Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radic Biol Med. 35(5):475–484. https://doi.org/10.1016/S0891-5849(03)00325-3

    Article  CAS  PubMed  Google Scholar 

  233. Hackett ES, Twedt DC, Gustafson DL (2013) Milk thistle and its derivative compounds: a review of opportunities for treatment of liver disease [Internet]. J Vet Intern Med. 27:10–6. [cited 2020 Oct 14]. Available from: http://doi.wiley.com/10.1111/jvim.12002. https://doi.org/10.1111/jvim.12002

  234. Bijak M (2017) Silybin, a major bioactive component of milk thistle (Silybum marianum L. Gaernt.)—chemistry, bioavailability, and metabolism [Internet]. Molecules. MDPI AG. 22:1942. [cited 2020 Oct 15]. Available from: /pmc/articles/PMC6150307/?report=abstract. https://doi.org/10.3390/molecules22111942

  235. Anthony K, Subramanya G, Uprichard S, Hammouda F, Saleh M (2013) Antioxidant and anti-hepatitis C viral activities of commercial milk thistle food supplements. Antioxidants. 2(1):23–36. https://doi.org/10.3390/antiox2010023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Surai PF (2015) Silymarin as a natural antioxidant: an overview of the current evidence and perspectives. Antioxidants [Internet]. 4(1):204–47. [cited 2020 Oct 15]. Available from: /pmc/articles/PMC4665566/?report=abstract. https://doi.org/10.3390/antiox4010204

  237. Chtourou Y, Fetoui H, Sefi M, Trabelsi K, Barkallah M, Boudawara T, et al. (2010) Silymarin, a natural antioxidant, protects cerebral cortex against manganese-induced neurotoxicity in adult rats. BioMetals [Internet]. 23(6):985–96. [cited 2020 Oct 15]. Available from: https://link.springer.com/article/10.1007/s10534-010-9345-x. https://doi.org/10.1007/s10534-010-9345-x

  238. Jia R, Cao L, Du J, Xu P, Jeney G, Yin G (2013) The protective effect of silymarin on the carbon tetrachloride (CCl 4)-induced liver injury in common carp (Cyprinus carpio). Vitr Cell Dev Biol - Anim [Internet]. 49(3):155–61. [cited 2020 Oct 15]. Available from: https://pubmed.ncbi.nlm.nih.gov/23435858/. https://doi.org/10.1007/s11626-013-9587-3

  239. Ghosh S, Sarkar A, Bhattacharyya S, Sil PC (2016) Silymarin protects mouse liver and kidney from thioacetamide induced toxicity by scavenging reactive oxygen species and activating PI3K-Akt pathway. Front Pharmacol [Internet]. 7(DEC):481. [cited 2020 Oct 15]. Available from: /pmc/articles/PMC5156955/?report=abstract. https://doi.org/10.3389/fphar.2016.00481

  240. Chtourou Y, Garoui EM, Boudawara T, Zeghal N (2013) Therapeutic efficacy of silymarin from milk thistle in reducing manganese-induced hepatic damage and apoptosis in rats. Hum Exp Toxicol [Internet]. 32(1):70–81. [cited 2020 Oct 15]. Available from: https://pubmed.ncbi.nlm.nih.gov/22899727/. https://doi.org/10.1177/0960327112455674

  241. Patel N, Joseph C, Corcoran GB, Ray SD (2010) Silymarin modulates doxorubicin-induced oxidative stress, Bcl-xL and p53 expression while preventing apoptotic and necrotic cell death in the liver. Toxicol Appl Pharmacol. 245(2):143–152. https://doi.org/10.1016/j.taap.2010.02.002

    Article  CAS  PubMed  Google Scholar 

  242. Singh BN, Shankar S, Srivastava RK (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications [Internet]. Biochem Pharmacol. Elsevier Inc. 82:1807–21. [cited 2020 Oct 14]. Available from: /pmc/articles/PMC4082721/?report=abstract. https://doi.org/10.1016/j.bcp.2011.07.093

  243. He J, Xu L, Yang L, Wang X (2018) Epigallocatechin gallate is the most effective catechin against antioxidant stress via hydrogen peroxide and radical scavenging activity. Med Sci Monit [Internet]. 24:8198–206. [cited 2020 Oct 14]. Available from: /pmc/articles/PMC6247744/?report=abstract. https://doi.org/10.12659/MSM.911175

  244. Murakami C, Hirakawa Y, Inui H, Nakano Y, Yoshida H (2002) Effect of tea catechins on cellular lipid peroxidation and cytotoxicity in HepG2 cells. Biosci Biotechnol Biochem [Internet]. 66(7):1559–62. [cited 2020 Oct 14]. Available from: https://www.tandfonline.com/doi/abs/10.1271/bbb.66.1559. https://doi.org/10.1271/bbb.66.1559

  245. Srividhya R, Jyothilakshmi V, Arulmathi K, Senthilkumaran V, Kalaiselvi P (2008) Attenuation of senescence-induced oxidative exacerbations in aged rat brain by (-)-epigallocatechin-3-gallate. Int J Dev Neurosci. 26(2):217–223. https://doi.org/10.1016/j.ijdevneu.2007.12.003

    Article  CAS  PubMed  Google Scholar 

  246. Han J, Wang M, Jing X, Shi H, Ren M, Lou H (2014) (-)-Epigallocatechin gallate protects against cerebral ischemia-induced oxidative stress via Nrf2/ARE signaling. Neurochem Res [Internet]. 39(7):1292–9. [cited 2020 Oct 14]. Available from: https://pubmed.ncbi.nlm.nih.gov/24792731/. https://doi.org/10.1007/s11064-014-1311-5

  247. Han XD, Zhang YY, Wang KL, Huang YP, Yang ZB, Liu Z (2017) The involvement of Nrf2 in the protective effects of (-)-Epigallocatechin-3-gallate (EGCG) on NaAsO2-induced hepatotoxicity. Oncotarget [Internet]. 8(39):65302–12. [cited 2020 Oct 14]. Available from: /pmc/articles/PMC5630332/?report=abstract. https://doi.org/10.18632/oncotarget.18582

  248. Wang Y, Liu N, Bian X, Sun G, Du F, Wang B, et al. (2015) Epigallocatechin-3-gallate reduces tubular cell apoptosis in mice with ureteral obstruction. J Surg Res [Internet]. 197(1):145–54. [cited 2020 Oct 14]. Available from: https://pubmed.ncbi.nlm.nih.gov/25913488/. https://doi.org/10.1016/j.jss.2015.03.034

  249. Granja A, Frias I, Neves AR, Pinheiro M, Reis S (2017) Therapeutic potential of epigallocatechin gallate nanodelivery systems, vol 2017. BioMed Research International, Hindawi Limited. https://doi.org/10.1155/2017/5813793

  250. Yimer EM, Tuem KB, Karim A, Ur-Rehman N, Anwar F (2019) Nigella sativa L. (Black Cumin): a promising natural remedy for wide range of illnesses [Internet]. Evid. Based Complement. Alternat. Med.. Hindawi Limited. 2019. [cited 2020 Oct 18]. Available from: /pmc/articles/PMC6535880/?report=abstract. https://doi.org/10.1155/2019/1528635

  251. Ismail N, Ismail M, Azmi NH, Abu Bakar MF, Basri H, Abdullah MA (2016) Modulation of hydrogen peroxide-induced oxidative stress in human neuronal cells by thymoquinone-rich fraction and thymoquinone via transcriptomic regulation of antioxidant and apoptotic signaling genes. Oxid Med Cell Longev [Internet]. 2016. [cited 2020 Oct 18]. Available from: /pmc/articles/PMC4707358/?report=abstract. https://doi.org/10.1155/2016/2528935

  252. Atta MS, Almadaly EA, El-Far AH, Saleh RM, Assar DH, Al Jaouni SK, et al. (2017) Thymoquinone defeats diabetes-induced testicular damage in rats targeting antioxidant, inflammatory and aromatase expression. Int J Mol Sci [Internet]. 18(5):919. [cited 2020 Oct 18]. Available from: /pmc/articles/PMC5454832/?report=abstract. https://doi.org/10.3390/ijms18050919

  253. Mabrouk A, Cheikh H Ben (2016) Thymoquinone ameliorates lead-induced suppression of the antioxidant system in rat kidneys. Libyan J Med [Internet]. 11(1):31018. [cited 2020 Oct 18]. Available from: /pmc/articles/PMC4823626/?report=abstract. https://doi.org/10.3402/ljm.v11.31018

  254. Ali BH, Al Za’abi M, Shalaby A, Manoj P, Waly MI, Yasin J, et al. (2015) The effect of thymoquinone treatment on the combined renal and pulmonary toxicity of cisplatin and diesel exhaust particles. Exp Biol Med [Internet]. 240(12):1698–707. [cited 2020 Oct 18]. Available from: /pmc/articles/PMC4935344/?report=abstract. https://doi.org/10.1177/1535370215579013

  255. Tas U, Ayan M, Sogut E, Kuloglu T, Uysal M, Tanriverdi H, et al. (2015) Protective effects of thymoquinone and melatonin on intestinal ischemia-reperfusion injury. Saudi J Gastroenterol [Internet]. 21(5):284–9. [cited 2020 Oct 18]. Available from: /pmc/articles/PMC4632252/?report=abstract. https://doi.org/10.4103/1319-3767.166203

  256. de la Iglesia R, Milagro FI, Campión J, Boqué N, Martínez JA 2010 Healthy properties of proanthocyanidins. BioFactors [Internet]. 36(3):159–68. [cited 2020 Oct 21]. Available from: http://doi.wiley.com/10.1002/biof.79. https://doi.org/10.1002/biof.79

  257. Manach C, Williamson G, Morand C, Scalbert A, Rémésy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American journal of clinical nutrition 81:230S–242S. https://doi.org/10.1093/ajcn/81.1.230s

    Article  CAS  PubMed  Google Scholar 

  258. Rodríguez-Pérez C, García-Villanova B, Guerra-Hernández E, Verardo V (2019) Grape seeds proanthocyanidins: an overview of in vivo bioactivity in animal models [Internet]. Nutrients. MDPI AG. 11:2435. [cited 2020 Oct 21]. Available from: /pmc/articles/PMC6835351/?report=abstract, https://doi.org/10.3390/nu11102435

  259. Neilson AP, O’Keefe SF, Bolling BW (2016) High-molecular-weight proanthocyanidins in foods: overcoming analytical challenges in pursuit of novel dietary bioactive components. Annual Review of Food Science and Technology. Annual Reviews Inc. 7:43–64. https://doi.org/10.1146/annurev-food-022814-015604

    Article  CAS  Google Scholar 

  260. Shi J, Yu J, Pohorly JE, Kakuda Y (2003) Polyphenolics in grape seeds — biochemistry and functionality. Journal of Medicinal Food. Mary Ann Liebert Inc. 6:291–299. https://doi.org/10.1089/109662003772519831

    Article  CAS  Google Scholar 

  261. Bagchi D, Bagchi M, Stohs SJ, Das DK, Ray SD, Kuszynski CA et al (2000) Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. In: Toxicology, pp 187–197. https://doi.org/10.1016/S0300-483X(00)00210-9

    Chapter  Google Scholar 

  262. Bian JT, Bhargava HN (1998) Protective effects of grape seed proanthocyanidins and selected antioxidants against TPA-induced hepatic and brain lipid peroxidation and DNA fragmentation, and peritoneal macrophage activation in mice. Gen Pharmacol. 30(5):771–776. https://doi.org/10.1016/S0306-3623(97)00332-7

    Article  Google Scholar 

  263. Jia Z, Song Z, Zhao Y, Wang X, Liu P (2011) Grape seed proanthocyanidin extract protects human lens epithelial cells from oxidative stress via reducing NF-κB and MAPK protein expression. Mol Vis [Internet]. 17:210–7. [cited 2020 Oct 21]. Available from: http://www.molvis.org/molvis/v17/a25

  264. Xia EQ, Deng GF, Guo YJ, Li H Bin 2010. Biological activities of polyphenols from grapes [Internet]. Int J Mol Sci. Multidisciplinary Digital Publishing Institute (MDPI). 11:622–46. [cited 2020 Oct 21]. Available from: /pmc/articles/PMC2852857/?report=abstract. https://doi.org/10.3390/ijms11020622

  265. Mahady GB, Gyllenhaal C, Fong HHS, Farnsworth NR (2000) Ginsengs: a review of safety and efficacy. Nutr Clin Care [Internet]. 3(2):90–101. [cited 2021 Mar 29]. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1523-5408.2000.00020.x. https://doi.org/10.1046/j.1523-5408.2000.00020.x

  266. Vuksan V, Sung MK, Sievenpiper JL, Stavro PM, Jenkins AL, Di Buono M et al (2008) Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: results of a randomized, double-blind, placebo-controlled study of efficacy and safety. Nutr Metab Cardiovasc Dis. 18(1):46–56. https://doi.org/10.1016/j.numecd.2006.04.003

    Article  PubMed  Google Scholar 

  267. Yennurajalingam S, Tannir NM, Williams JL, Lu Z, Hess KR, Frisbee-Hume S et al (2017) A double-blind, randomized, placebo-controlled trial of panax ginseng for cancer-related fatigue in patients with advanced cancer. JNCCN J Natl Compr Cancer Netw. 15(9):1111–1120. https://doi.org/10.6004/jnccn.2017.0149

    Article  Google Scholar 

  268. Egert S, Bosy-Westphal A, Seiberl J, Kürbitz C, Settler U, Plachta-Danielzik S, et al. (2009) Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study. Br J Nutr [Internet]. 102(7):1065–74. [cited 2021 Apr 1]. Available from: https://doi.org/10.1017/S0007114509359127

  269. Lu NT, Crespi CM, Liu NM, Vu JQ, Ahmadieh Y, Wu S et al (2016) A phase i dose escalation study demonstrates quercetin safety and explores potential for bioflavonoid antivirals in patients with chronic hepatitis C. Phyther Res. 30(1):160–168. https://doi.org/10.1002/ptr.5518

    Article  CAS  Google Scholar 

  270. Pakfetrat M, Basiri F, Malekmakan L, Roozbeh J (2014) Effects of turmeric on uremic pruritus in end stage renal disease patients: a double-blind randomized clinical trial. J Nephrol. 27(2):203–207. https://doi.org/10.1007/s40620-014-0039-2

    Article  CAS  PubMed  Google Scholar 

  271. Epelbaum R, Schaffer M, Vizel B, Badmaev V, Bar-Sela G (2010) Curcumin and gemcitabine in patients with advanced pancreatic cancer. Nutr Cancer [Internet]. 62(8):1137–41. [cited 2021 Mar 30]. Available from: https://pubmed.ncbi.nlm.nih.gov/21058202/. https://doi.org/10.1080/01635581.2010.513802

  272. Vázquez Cisneros LC, López-Uriarte P, López-Espinoza A, Navarro Meza M, Espinoza-Gallardo AC, Guzmán Aburto MB (2017) Effects of green tea and its epigallocatechin (EGCG) content on body weight and fat mass in humans: a systematic review. Nutr Hosp [Internet]. 34(3):731–7. [cited 2021 Mar 30]. Available from: https://pubmed.ncbi.nlm.nih.gov/28627214/. https://doi.org/10.20960/nh.753

  273. Hu J, Webster D, Cao J, Shao A (2018) The safety of green tea and green tea extract consumption in adults – results of a systematic review. Regulatory Toxicology and Pharmacology. Academic Press Inc. 95:412–433. https://doi.org/10.1016/j.yrtph.2018.03.019

    Article  CAS  Google Scholar 

  274. Koshak A, Wei L, Koshak E, Wali S, Alamoudi O, Demerdash A et al (2017) Nigella sativa supplementation improves asthma control and biomarkers: a randomized, double-blind, placebo-controlled trial. Phyther Res. 31(3):403–409. https://doi.org/10.1002/ptr.5761

    Article  CAS  Google Scholar 

  275. Moeen-ud-din H, Murad S, Fatima A (2014) Placebo controlled study on comparison of effects of Nigella sativa and nicotinic acid along with low fat diet and physical exercise on LDL-cholesterol and HDL-cholesterol. Pakistan J Med Heal Sci. 8(2):306–309

    Google Scholar 

  276. Handog EB, Galang DAVF, De Leon-Godinez MA, Chan GP (2009) A randomized, double-blind, placebo-controlled trial of oral procyanidin with vitamins A, C, E for melasma among Filipino women. Int J Dermatol [Internet]. 48(8):896–901. [cited 2021 Mar 31]. Available from: https://pubmed.ncbi.nlm.nih.gov/19659873/. https://doi.org/10.1111/j.1365-4632.2009.04130.x

  277. Sano A (2017) Safety assessment of 4-week oral intake of proanthocyanidin-rich grape seed extract in healthy subjects. Food Chem Toxicol [Internet]. 108(Pt B):519–23. [cited 2021 Mar 31]. Available from: https://pubmed.ncbi.nlm.nih.gov/27889390/. https://doi.org/10.1016/j.fct.2016.11.021

  278. Sonam KS, Guleria S (2017) Synergistic antioxidant activity of natural products. Ann Pharmacol Pharm [Internet]. 2(16):1–6. [cited 2020 Sep 25]. Available from: http://www.remedypublications.com/pharmacology-and-pharmaceutics/articles/pdfs_folder/app-v2-id1086.pdf

Download references

Code Availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, L.M.A, D.S; writing—original draft preparation, L.M.A; writing—review and editing, L.M.A, Y.J, J.P, and D.S. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Dianjun Sun.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angwa, L.M., Jiang, Y., Pei, J. et al. Antioxidant Phytochemicals for the Prevention of Fluoride-Induced Oxidative Stress and Apoptosis: a Review. Biol Trace Elem Res 200, 1418–1441 (2022). https://doi.org/10.1007/s12011-021-02729-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02729-8

Keywords

Navigation