Skip to main content

Advertisement

Log in

Mitochondrial Dysfunction in Arsenic-Induced Hepatotoxicity: Pathogenic and Therapeutic Implications

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Mitochondria are vital cellular organelles associated with energy production as well as cell signaling pathways. These organelles, responsible for metabolism, are highly abundant in hepatocytes that make them key players in hepatotoxicity. The literature suggests that mitochondria are targeted by various environmental pollutants. Arsenic, a toxic metalloid known as an environmental pollutant, readily contaminates drinking water and exerts toxic effects. It is toxic to various cellular organs; among them, the liver seems to be most affected. A growing body of evidence suggests that within cells, arsenic is highly toxic to mitochondria and reported to cause oxidative stress and alter an array of signaling pathways and functions. Hence, it is imperative to highlight the mechanisms associated with altered mitochondrial functions and integrity in arsenic-induced liver toxicity. This review provides the details of mechanistic aspects of mitochondrial dysfunction in arsenic-induced hepatotoxicity as well as various ameliorative measures undertaken concerning mitochondrial functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

We have not used any data that are required to be available for the readers.

References

  1. Ramachandran A, Visschers RG, Duan L, Akakpo JY, Jaeschke H (2018) Mitochondrial dysfunction as a mechanism of drug-induced hepatotoxicity: current understanding and future perspectives. J Clin Transl Res 4:75. https://doi.org/10.18053/jctres.04.201801.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Degli Esposti D, Hamelin J, Bosselut N, Saroy R, Sebagh M, Pommier A, Martel C, Lemoine A (2012) Mitochondrial roles and cytoprotection in chronic liver injury. Biochem Res Int 2012:387626–387616. https://doi.org/10.1155/2012/387626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meyer JN, Leung MC, Rooney JP, Sendoel A, Hengartner MO, Kisby GE, Bess AS (2013) Mitochondria as a target of environmental toxicants. Toxicol Sci 134:1–7. https://doi.org/10.1093/toxsci/kft102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chi Q, Liu T, Sun Z, Tan S, Li S, Li S (2017) Involvement of mitochondrial pathway in environmental metal pollutant lead-induced apoptosis of chicken liver: perspectives from oxidative stress and energy metabolism. Environ Sci Pollut Res 24:28121–28131. https://doi.org/10.1007/s11356-017-0411-6

    Article  CAS  Google Scholar 

  5. Yin F, Gupta R, Vergnes L, Driscoll WS, Ricks J, Ramanathan G, Stewart JA, Shih DM, Faull KF, Beaven SW, Lusis AJ (2019) Diesel exhaust induces mitochondrial dysfunction, hyperlipidemia, and liver steatosis. Arterioscler Thromb Vasc Biol 39:1776–1786. https://doi.org/10.1161/ATVBAHA.119.312736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thangapandiyan S, Ramesh M, Hema T, Miltonprabu S, Uddin MS, Nandhini V, Bavithra Jothi G (2019) Sulforaphane potentially ameliorates arsenic induced hepatotoxicity in Albino Wistar rats: implication of PI3K/Akt/Nrf2 signaling pathway. Cell Physiol Biochem 52(5):1203–1222. https://doi.org/10.33594/000000082

    Article  CAS  PubMed  Google Scholar 

  7. Argos M, Kalra T, Rathouz PJ, Chen Y, Pierce B, Parvez F, Islam T, Ahmed A, Rakibuz-Zaman M, Hasan R, Sarwar G (2010) Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study. Lancet 376:252–258. https://doi.org/10.1016/S0140-6736(10)60481-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goswami M, Das KS, Sarma R, Moitra T, Baruah M (2015) Arsenic contamination: a case study from five districts of Assam, India. Clarion 4:25–29

    Google Scholar 

  9. Hong YS, Song KH, Chung JY (2014) Health effects of chronic arsenic exposure. J Prev Med Public Health 47:245–255. https://doi.org/10.3961/jpmph.14.035

    Article  PubMed  PubMed Central  Google Scholar 

  10. Guha Mazumder DN (2005) Effect of chronic intake of arsenic contaminated water on liver. Toxicol Appl Pharmacol 206:169–175. https://doi.org/10.1016/j.taap.2004.08.025

    Article  CAS  Google Scholar 

  11. Das N, Paul S, Chatterjee D, Banerjee N, Majumder NS, Sarma N, Sau TJ, Basu S, Banerjee S, Majumder P, Bandyopadhyay AK (2012) Arsenic exposure through drinking water increases the risk of liver and cardiovascular diseases in the population of West Bengal, India. BMC Public Health 12:639. https://doi.org/10.1186/1471-2458-12-639

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valko M (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31:95–107. https://doi.org/10.1002/jat.1649

    Article  CAS  PubMed  Google Scholar 

  13. Sierra-Santoyo A, Hernández A, López MD, Mendoza-Figueroa T (1996) Effect of arsenite on urea production by long-term cultures of adult rat hepatocytes. J Appl Toxicol 16:281–287. https://doi.org/10.1002/(SICI)1099-1263(199607)16:4<281::AID-JAT344>3.0.CO;2-K

    Article  CAS  PubMed  Google Scholar 

  14. Prakash C, Kamboj VK, Ahlawat P, Kumar V (2015) Structural and molecular alterations in arsenic-induced hepatic oxidative stress in rats: a FTIR study. Toxicol Environ Chem 97:1408–1421. https://doi.org/10.1080/02772248.2015.1102425

    Article  CAS  Google Scholar 

  15. Huo T, Fang Y, Zhang Y, Wang Y, Feng C, Yuan M, Wang S, Chen M, Jiang H (2017) Plasma metabolomics study of the hepatoprotective effect of glycyrrhetinic acid on realgar-induced sub-chronic hepatotoxicity in mice via 1H NMR analysis. J Ethnopharmacol 208:36–43. https://doi.org/10.1016/j.jep.2017.06.043

    Article  CAS  PubMed  Google Scholar 

  16. Hu Y, Li J, Lou B, Wu R, Wang G, Lu C, Wang H, Pi J, Xu Y (2020) The Role of Reactive oxygen species in arsenic toxicity. Biomolecules 10(2):240. https://doi.org/10.3390/biom10020240

    Article  CAS  PubMed Central  Google Scholar 

  17. Flora SJS (2011) Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med 51:257281–257281. https://doi.org/10.1016/j.freeradbiomed.2011.04.008

    Article  CAS  Google Scholar 

  18. Singh AP, Goel RK, Kaur T (2011) Mechanisms pertaining to arsenic toxicity. Toxicol Int 18:87. https://doi.org/10.4103/0971-6580.84258

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu Y, Liang Y, Zheng B, Chu L, Ma D, Wang H, Chu X, Zhang J (2020) Protective effects of crocetin on arsenic trioxide-induced hepatic injury: involvement of suppression in oxidative stress and inflammation through activation of Nrf2 signaling pathway in rats. Drug Des Devel Ther 14:1921–1931. https://doi.org/10.2147/DDDT.S247947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xie G, Meng X, Wang F (2017) Eriodictyol attenuates arsenic trioxide-induced liver injury by activation of Nrf2. Oncotarget 8:68668–68674. https://doi.org/10.18632/oncotarget.19822

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jain A, Yadav A, Bozhkov AI, Padalko VI, Flora SJS (2011) Therapeutic efficacy of silymarin and naringeninin reducing arsenic-induced hepatic damage in young rats. Ecotoxicol Environ Saf 74:607614–607614. https://doi.org/10.1016/j.ecoenv.2010.08.002

    Article  CAS  Google Scholar 

  22. Kharroubi W, Dhibi M, Haouas Z, Chreif I, Neffati F, Hammami M, Sakly R (2014) Effects of sodium arsenate exposure on liver fatty acid profiles and oxidative stress in rats. Environ Sci Pollut Res 21:1648–1657. https://doi.org/10.1007/s11356-013-2057-3

    Article  CAS  Google Scholar 

  23. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922. https://doi.org/10.1007/s10495-007-0756-2

    Article  CAS  PubMed  Google Scholar 

  24. Rizzuto R, Bernardi P, Pozzan T (2000) Mitochondria as all-round players of the calcium game. J Physiol 529:37–47. https://doi.org/10.1111/j.1469-7793.2000.00037.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scorrano L (2009) Opening the doors to cytochrome c: changes in mitochondrial shape and apoptosis. Int J Biochem Cell Biol 41:1875–1883. https://doi.org/10.1016/j.biocel.2009.04.016

    Article  CAS  PubMed  Google Scholar 

  26. Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc) 70:200–214

    Article  CAS  Google Scholar 

  27. Auger C, Alhasawi A, Contavadoo M, Appanna VD (2015) Dysfunctional mitochondrial bioenergetics and the pathogenesis of hepatic disorders. Front Cell Dev Biol 3:40. https://doi.org/10.3389/fcell.2015.00040

    Article  PubMed  PubMed Central  Google Scholar 

  28. Miltonprabu S, Sumedha NC (2014) Arsenic-induced hepatic mitochondrial toxicity in rats and its amelioration by diallyl trisulfide. Toxicol Mech Methods 24:124–135. https://doi.org/10.3109/15376516.2013.869778

    Article  CAS  PubMed  Google Scholar 

  29. Das J, Ghosh J, Manna P, Sil PC (2010) Protective role of taurine against arsenic-induced mitochondria-dependent hepatic apoptosis via the inhibition of PKCδ-JNK pathway. PLoS One 5:e12602. https://doi.org/10.1371/journal.pone.0012602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. El-Saad AM, Al-Kahtani MA, Abdel-Moneim AM (2016) N-acetylcysteine and meso-2, 3-dimercaptosuccinic acid alleviate oxidative stress and hepatic dysfunction induced by sodium arsenite in male rats. Drug Des Devel Ther 10:3425–3434. https://doi.org/10.2147/DDDT.S115339

    Article  PubMed  PubMed Central  Google Scholar 

  31. Han YH, Kim SZ, Kim SH, Park WH (2008) Arsenic trioxide inhibits the growth of Calu-6 cells via inducing a G2 arrest of the cell cycle and apoptosis accompanied with the depletion of GSH. Cancer Lett 270:40–55. https://doi.org/10.1016/j.canlet.2008.04.041

    Article  CAS  PubMed  Google Scholar 

  32. Raimundo N (2014) Mitochondrial pathology: stress signals from the energy factory. Trends Mol Med 20:282–292. https://doi.org/10.1016/j.molmed.2014.01.005

    Article  CAS  PubMed  Google Scholar 

  33. Ramanathan K, Shila S, Kumaran S, Panneerselvam C (2003) Ascorbic acid and α-tocopherol as potent modulators on arsenic induced toxicity in mitochondria. J Nutr Biochem 14:416–420. https://doi.org/10.1016/S0955-2863(03)00076-7

  34. Muthumani M, Miltonprabu S (2015) Ameliorative efficacy of tetrahydrocurcumin against arsenic induced oxidative damage, dyslipidemia and hepatic mitochondrial toxicity in rats. Chem Biol Interact 235:95–105. https://doi.org/10.1016/j.cbi.2015.04.006

  35. Reichl FX, Szinicz L, Kreppel H, Forth W (1989) Effects on mitochondrial metabolism in livers of guinea pigs after a single or repeated injection of As2O3. Arch Toxicol 63:419–422. https://doi.org/10.1007/BF00303134

  36. García-Sevillano MA, García-Barrera T, Navarro F, Montero-Lobato Z, Gómez-Ariza JL (2015) Shotgun metabolomic approach based on mass spectrometry for hepatic mitochondria of mice under arsenic exposure. Biometals 28:341–351. https://doi.org/10.1007/s10534-015-9837-9

  37. Hatefi Y, Hanstein WG, Galante Y, Stiggall DL (1975) Mitochondrial ATP-Pi exchange complex and the site of uncoupling of oxidative phosphorylation. Fed Proc 34:1699

  38. Mitchell P (1961) Conduction of protons through membranes of mitochondria and bacteria by uncouplers of oxidative phosphorylation. Biochem J 81:24

  39. Prakash C, Kumar V (2016) Chronic arsenic exposure-induced oxidative stress is mediated by decreased mitochondrial biogenesis in rat liver. Biol Trace Elem Res 173:87–95. https://doi.org/10.1007/s12011-016-0622-6

  40. Paul MK, Kumar R, Mukhopadhyay AK (2008) Dithiothreitol abrogates the effect of arsenic trioxide on normal rat liver mitochondria and human hepatocellular carcinoma cells. Toxicol Appl Pharmacol 226:140–152. https://doi.org/10.1016/j.taap.2007.09.020

  41. Hosseini MJ, Shaki F, Ghazi-Khansari M, Pourahmad J (2013) Toxicity of arsenic (III) on isolated liver mitochondria: a new mechanistic approach. Iran J Pharm Sci 12:121

  42. Keshtzar E, Khodayar MJ, Javadipour M, Ghaffari MA, Bolduc DL, Rezaei M (2016) Ellagic acid protects against arsenic toxicity in isolated rat mitochondria possibly through the maintaining of complex II. Hum Exp Toxicol 35:1060–1072. https://doi.org/10.1177/0960327115618247

  43. Jiao YH, Zhang Q, Pan LL, Chen XY, Lei KL, Zhao J, Jiang FL, Liu Y (2015) Rat liver mitochondrial dysfunction induced by an organic arsenical compound 4-(2-nitrobenzaliminyl) phenyl arsenoxide. J Membr Biol 248:1071–1078. https://doi.org/10.1007/s00232-015-9818-5

  44. Rojewski MT, Korper S, Thiel E, Schrezenmeier H (2004) Depolarization of mitochondria and activation of caspases are common features of arsenic (III)-induced apoptosis in myelogenic and lymphatic cell lines. Chem Res Toxicol 17:119–128. https://doi.org/10.1021/tx034104+

  45. Li JJ, Tang Q, Li Y, Hu BR, Ming ZY, Fu Q, Qian JQ, Xiang JZ (2006) Role of oxidative stress in the apoptosis of hepatocellular carcinoma induced by combination of arsenic trioxide and ascorbic acid. Acta Pharm Sin 27:1078–1084. https://doi.org/10.1111/j.1745-7254.2006.00345.x

  46. Wang Y, Xu Y, Wang H, Xue P, Li X, Li B, Zheng Q, Sun G (2009) Arsenic induces mitochondria-dependent apoptosis by reactive oxygen species generation rather than glutathione depletion in Chang human hepatocytes. Arch Toxicol 83:899–908. https://doi.org/10.1007/s00204-009-0451-x

  47. Majumdar S, Karmakar S, Maiti A, Choudhury M, Ghosh A, Das AS, Mitra C (2011) Arsenic-induced hepatic mitochondrial toxicity in rats and its amelioration by dietary phosphate. Environ Toxicol Pharmacol 31:107–118. https://doi.org/10.1016/j.etap.2010.09.011

  48. Majumdar S, Maiti A, Karmakar S, Sekhar Das A, Mukherjee S, Das D, Mitra C (2012) Antiapoptotic efficacy of folic acid and vitamin B12 against arsenic-induced toxicity. Environ Toxicol 27:351–363. https://doi.org/10.1002/tox.20648

  49. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565. https://doi.org/10.1038/nrm1150

  50. Naranmandura H, Chen X, Tanaka M, Wang WW, Rehman K, Xu S, Chen Z, Chen SQ, Suzuki N (2012) Release of apoptotic cytochrome C from mitochondria by dimethylarsinous acid occurs through interaction with voltage-dependent anion channel in vitro. Toxicol Sci 128:137–146. https://doi.org/10.1093/toxsci/kfs154

  51. Scheffler IE (2007) Structure and morphology. Integration into the cell. In: Hoboken NJ (ed) Mitochondria, 2nd edn. John Wiley & Sons, Inc., pp 18–59

  52. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252. https://doi.org/10.1016/j.cell.2006.06.010

  53. López-Lluch G, Irusta PM, Navas P, de Cabo R (2008) Mitochondrial biogenesis and healthy aging. Exp Gerontol 43:813–819. https://doi.org/10.1016/j.exger.2008.06.014

  54. Fowler BA, Woods JS, Schiller CM (1977) Ultrastructural and biochemical effects of prolonged oral arsenic exposure on liver mitochondria of rats. Environ Health Perspect 19:197–204. https://doi.org/10.1289/ehp.7719197

  55. Mohelska H, Bencko V, Smetana K, Hynčica V (1980) Ultrastructural changes in hepatocytes of mice exposed to arsenic in drinking water. Exp Path 18:275–281. https://doi.org/10.1016/S0014-4908(80)80032-9

  56. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344. https://doi.org/10.1111/j.1469-7793.2003.00335.x

  57. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13. https://doi.org/10.1042/BJ20081386

  58. Kaakar P, Singh BK (2007) Mitochondria: a hub of redox activities and cellular distress control. Mol Cell Biochem 305:235–253. https://doi.org/10.1007/s11010-007-9520-8

  59. Santra A, Chowdhury A, Ghatak S, Biswas A, Dhali GK (2007) Arsenic induces apoptosis in mouse liver is mitochondria dependent and is abrogated by N-acetylcysteine. Toxicol Appl Pharmacol 220:146–155. https://doi.org/10.1016/j.taap.2006.12.029

  60. Ahangarpour A, Zeidooni L, Rezaei M, Alboghobeish S, Samimi A, Oroojan AA (2017) Protective effect of metformin on toxicity of butyric acid and arsenic in isolated liver mitochondria and langerhans islets in male mice: an in vitro study. Iran J Basic Med Sci 20:1297. https://doi.org/10.22038/IJBMS.2017.9567

  61. Brunati AM, Pagano MA, Bindoli A, Rigobello MP (2010) Thiol redox systems and protein kinases in hepatic stellate cell regulatory processes. Free Radic Res 44:363–378. https://doi.org/10.3109/10715760903555836

  62. Adil M, Kandhare AD, Visnagri A, Bodhankar SL (2015) Naringin ameliorates sodium arsenite-induced renal and hepatic toxicity in rats: decisive role of KIM-1, Caspase-3, TGF-β, and TNF-α. Ren Fail 37:1396–1407. https://doi.org/10.3109/0886022X.2015.1074462

  63. Mershiba SD, Dassprakash MV, Saraswathy SD (2013) Protective effect of naringenin on hepatic and renal dysfunction and oxidative stress in arsenic intoxicated rats. Mol Biol Rep 40:3681–3691. https://doi.org/10.1007/s11033-012-2444-8

  64. El-Demerdash FM, Yousef MI, Radwan FME (2009) Ameliorating effect of curcumin on sodium arsenite-induced oxidative damage and lipid peroxidation in different rat organs. Food Chem Toxicol 47:249–254. https://doi.org/10.1016/j.fct.2008.11.013

  65. Bodaghi-Namileh V, Sepand MR, Omidi A, Aghsami M, Seyednejad SA, Kasirzadeh S, Sabzevari O (2018) Acetyl-l-carnitine attenuates arsenic-induced liver injury by abrogation of mitochondrial dysfunction, inflammation, and apoptosis in rats. Environ Toxicol Pharmacol 58:11–20. https://doi.org/10.1016/j.etap.2017.12.005

  66. Wang C, Youle RJ (2009) The role of mitochondria in apoptosis. Annu Rev Genet 43:95–118. https://doi.org/10.5483/bmbrep.2008.41.1.011

  67. Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 87:1157–1180. https://doi.org/10.1007/s00204-013-1034-4

  68. Cai J, Yang J, Jones D (1998) Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta 1366:139–149. https://doi.org/10.1016/S0005-2728(98)00109-1

  69. Kale J, Osterlund E, Andrews D (2018) BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ 25:65–80. https://doi.org/10.1038/cdd.2017.186

  70. Belzacq AS, Jacotot E, Vieira HL, Mistro D, Granville DJ, Xie Z, Reed JC, Kroemer G, Brenner C (2001) Apoptosis induction by the photosensitizer verteporfin: identification of mitochondrial adenine nucleotide translocator as a critical target. Cancer Res 61:1260–1264

  71. Renu K, Saravanan A, Elangovan A, Ramesh S, Annamalai S, Namachivayam A, Abel P, Madhyastha H, Madhyastha R, Maruyama M, Balachandar V, Valsala Gopalakrishnan A (2020) An appraisal on molecular and biochemical signalling cascades during arsenic-induced hepatotoxicity. Life Sci 260:118438. https://doi.org/10.1016/j.lfs.2020.118438

  72. Saha S, Rashid K, Sadhukhan P, Agarwal N, Sil PC (2016) Attenuative role of mangiferin in oxidative stress‐mediated liver dysfunction in arsenic-intoxicated murines. Biofactors 42:515–532. https://doi.org/10.1002/biof.1276

  73. Choudhury S, Ghosh S, Mukherjee S, Gupta P, Bhattacharya S, Adhikary A, Chattopadhyay S (2016) Pomegranate protects against arsenic-induced p53-dependent ROS-mediated inflammation and apoptosis in liver cells. J Nutr Biochem 38:25–40. https://doi.org/10.1016/j.jnutbio.2016.09.001

  74. Dong N, Feng J, Xie J, Tian X, Li M, Liu P, Zhao Y, Wei C, Gao Y, Li B, Qiu Y (2020) Co-exposure to arsenic-fluoride results in endoplasmic reticulum stress-induced apoptosis through the PERK signaling pathway in the liver of offspring rats. Biol Trace Elem Res 197:192–201. https://doi.org/10.1007/s12011-019-01975-1

  75. Ahamed M, Akhtar MJ, Alhadlaq HA (2019) Co-exposure to SiO2 nanoparticles and arsenic induced augmentation of oxidative stress and mitochondria-dependent apoptosis in human cells. Int J Environ Res Public Health 16:3199. https://doi.org/10.3390/ijerph16173199

  76. Sarkar N, Das B, Bishayee A, Sinha D (2020) Arsenal of phytochemicals to combat against arsenic-induced mitochondrial stress and cancer. Antioxidants & Redox Signalling 1230–1256. https://doi.org/10.1089/ars.2019.7950

  77. Soni M, Prakash C, Kaushik S, Chhikara SK, Kumar V (2020) Hydroxytyrosol improving metabolic response by amelioration of oxidative stress following arsenic exposure in rat liver. Res J Biotechnol 15:104–112

  78. Ling S, Shan Q, Liu P, Feng T, Zhang X, Xiang P, Chen K, Xie H, Song P, Zhou L, Liu J (2017) Metformin ameliorates arsenic trioxide hepatotoxicity via inhibiting mitochondrial complex I. Cell Death Dis 8:e3159. https://doi.org/10.1038/cddis.2017.482

  79. Singh S, Rana SV (2010) Ascorbic acid improves mitochondrial function in liver of arsenic-treated rat. Toxicol Ind Health 26:265–272. https://doi.org/10.1177/0748233710365694

  80. Yousefsani BS, Pourahmad J, Hosseinzadeh H (2018) The mechanism of protective effect of crocin against liver mitochondrial toxicity caused by arsenic III. Toxicol Mech Methods 28:105–114. https://doi.org/10.1080/15376516.2017.1368054

  81. Ali S SK, Medda N, Dutta SM, Patra R, Maiti S (2020) Protection against mitochondrial oxidative-stress by flesh-extract of edible freshwater snail Bellamya bengalensis prevents arsenic induced DNA and tissue damage. Anti-Cancer Agents Med Chem 20:1266. https://doi.org/10.2174/1871520620666200410081535

Download references

Acknowledgements

The authors are thankful to the Indian Council of Medical Research (ICMR), New Delhi, India (grant No. 58/51/2011-BMS) in the form of ad-hoc scheme project sanctioned to VK.

Author information

Authors and Affiliations

Authors

Contributions

CP, SK, and VK conceptualized the idea. CP prepared the initial draft. SK and VK prepared the final manuscript.

Corresponding author

Correspondence to Vijay Kumar.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, C., Chhikara, S. & Kumar, V. Mitochondrial Dysfunction in Arsenic-Induced Hepatotoxicity: Pathogenic and Therapeutic Implications. Biol Trace Elem Res 200, 261–270 (2022). https://doi.org/10.1007/s12011-021-02624-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02624-2

Keywords

Navigation