Skip to main content

Advertisement

Log in

Associations Between Serum Multiple Metals Exposures and Metabolic Syndrome: a Longitudinal Cohort Study

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Although many studies have confirmed metabolic syndrome (MetS) is correlated with metal exposures, few studies have elucidated the associations of multiple metals with MetS risk. We aim to explore the relationship between serum 22 metals and MetS. We determined serum 22 metals using ICP-MS and used LASSO regression to select metals independently related with MetS to construct multiple-metals model. We further explored the dose-response relationship between positive metals and MetS by the restricted cubic spline regression. After screening by LASSO regression, serum 11 metals were selected to construct multiple-metals model in cross-sectional analysis, while 5 metals in longitudinal analysis. In the 11-metal model, only tin and zinc were associated with MetS in cross-sectional analysis (ORtin = 2.22, 95% CI:1.43, 3.45; ORzinc = 2.17, 95% CI: 1.42, 3.32; both Ptrend < 0.05). Besides, the same results were found in the 5-metal model in longitudinal analysis (HRtin = 1.66, 95% CI: 0.87, 3.17; HRzinc = 1.83, 95% CI: 1.07, 3.14; both Ptrend < 0.05). Moreover, there were positive linear relationships between serum tin and zinc concentrations and the increasing risk of MetS (both Poverall < 0.05, Pnon-linearity > 0.05). Furthermore, the interaction between high tin and high zinc was also associated with increasing MetS risk (Pinteraction < 0.05). We found that serum tin and zinc were independently and interactively associated with MetS in the southern Chinese men. Our results suggested that high tin and zinc may be the risk factors of MetS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Marott SC, Nordestgaard BG, Tybjaerg-Hansen A, Benn M (2016) Components of the metabolic syndrome and risk of type 2 diabetes. J Clin Endocrinol Metab 101(8):3212–3221. https://doi.org/10.1210/jc.2015-3777

    Article  CAS  PubMed  Google Scholar 

  2. Alberti KGMM, Zimmet P, Shaw J (2005) The metabolic syndrome—a new worldwide definition. Lancet 366(9491):1059–1062. https://doi.org/10.1016/s0140-6736(05)67402-8

    Article  PubMed  Google Scholar 

  3. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC, Spertus JA, Costa F (2005) Diagnosis and management of the metabolic syndrome. Circulation 112(17):2735–2752. https://doi.org/10.1161/circulationaha.105.169404

    Article  PubMed  Google Scholar 

  4. Chen K, Mi H, Gao Y, Tan A, Lu Z, Wu C, Liao M, Zhang Y, Mo Z (2012) Metabolic syndrome: a potential and independent risk factor for erectile dysfunction in the Chinese male population. Urology 80(6):1287–1292. https://doi.org/10.1016/j.urology.2012.08.028

    Article  PubMed  Google Scholar 

  5. Andreadis EA, Tsourous GI, Tzavara CK, Georgiopoulos DX, Katsanou PM, Marakomichelakis GE, Diamantopoulos EJ (2007) Metabolic syndrome and incident cardiovascular morbidity and mortality in a Mediterranean hypertensive population. Am J Hypertens 20(5):558–564. https://doi.org/10.1016/j.amjhyper.2006.12.001

    Article  PubMed  Google Scholar 

  6. Hildrum B, Mykletun A, Dahl AA, Midthjell K (2009) Metabolic syndrome and risk of mortality in middle-aged versus elderly individuals: the Nord-Trondelag Health Study (HUNT). Diabetologia 52(4):583–590. https://doi.org/10.1007/s00125-009-1271-5

    Article  CAS  PubMed  Google Scholar 

  7. Kurl S, Laaksonen DE, Jae SY, Makikallio TH, Zaccardi F, Kauhanen J, Ronkainen K, Laukkanen JA (2016) Metabolic syndrome and the risk of sudden cardiac death in middle-aged men. Int J Cardiol 203:792–797. https://doi.org/10.1016/j.ijcard.2015.10.218

    Article  PubMed  Google Scholar 

  8. Gupta A, Gupta V (2010) Metabolic syndrome: what are the risks for humans. BioScience Trends 4(5):204–212

    PubMed  Google Scholar 

  9. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283(2-3):65–87. https://doi.org/10.1016/j.tox.2011.03.001

    Article  CAS  PubMed  Google Scholar 

  10. Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L (2016) A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res Int 23(9):8244–8259. https://doi.org/10.1007/s11356-016-6333-x

    Article  CAS  PubMed  Google Scholar 

  11. Bulka CM, Persky VW, Daviglus ML, Durazo-Arvizu RA, Argos M (2019) Multiple metal exposures and metabolic syndrome: a cross-sectional analysis of the National Health and Nutrition Examination Survey 2011-2014. Environ Res 168:397–405. https://doi.org/10.1016/j.envres.2018.10.022

    Article  CAS  PubMed  Google Scholar 

  12. Guo X, Yang Q, Zhang W, Chen Y, Ren J, Gao A (2019) Associations of blood levels of trace elements and heavy metals with metabolic syndrome in Chinese male adults with microRNA as mediators involved. Environ Pollut 248:66–73. https://doi.org/10.1016/j.envpol.2019.02.015

    Article  CAS  PubMed  Google Scholar 

  13. Eom S-Y, Choi S-H, Ahn S-J, Kim D-K, Kim D-W, Lim J-A, Choi B-S, Shin H-J, Yun S-W, Yoon H-J, Kim Y-M, Hong Y-S, Yun Y-W, Sohn S-J, Kim H, Park K-S, Pyo H-S, Kim H, Oh S-Y, Kim J, Lee S-A, Ha M, Kwon H-J, Park J-D (2013) Reference levels of blood mercury and association with metabolic syndrome in Korean adults. Int Arch Occup Environ Health 87(5):501–513. https://doi.org/10.1007/s00420-013-0891-8

    Article  CAS  PubMed  Google Scholar 

  14. Bai J, Xun P, Morris S, Jacobs DR Jr, Liu K, He K (2015) Chromium exposure and incidence of metabolic syndrome among American young adults over a 23-year follow-up: the CARDIA Trace Element Study. Sci Rep 5:15606. https://doi.org/10.1038/srep15606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ghasemi A, Zahediasl S, Syedmoradi L, Azizi F (2009) Low serum magnesium levels in elderly subjects with metabolic syndrome. Biol Trace Elem Res 136(1):18–25. https://doi.org/10.1007/s12011-009-8522-7

    Article  CAS  PubMed  Google Scholar 

  16. Noor N, Zong G, Seely EW, Weisskopf M, James-Todd T (2018) Urinary cadmium concentrations and metabolic syndrome in U.S. adults: the National Health and Nutrition Examination Survey 2001–2014. Environ Int 121:349–356. https://doi.org/10.1016/j.envint.2018.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rhee SYHY, Woo JT et al (2008) 4 Blood lead is significantly associated with metabolic syndrome in Korean adults_ an analysis based on the Korea National Health and Nutrition Examination Survey (KNHANES), 2008.pdf. Cardiovasc Diabetol 2013 12(9). https://doi.org/10.1186/1475-2840-12-9

  18. Tan A, Gao Y, Yang X, Zhang H, Qin X, Mo L, Peng T, Xia N, Mo Z (2011) Low serum osteocalcin level is a potential marker for metabolic syndrome: results from a Chinese male population survey. Metabolism 60(8):1186–1192. https://doi.org/10.1016/j.metabol.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  19. Xing Y, Xu S, Jia A, Cai J, Zhao M, Guo J, Ji Q, Ming J (2018) <Recommendations for revision of Chinese diagnostic criterion for metabolic syndrome [PMIDZ28640958].pdf>. J Diabetes 10(3):232–239. https://doi.org/10.1111/jdb.12578

    Article  PubMed  Google Scholar 

  20. Williams MTG, Roney N, Crawford J, Coles C, McClure PR, Garey JD, Zaccaria K, Citra M, (2012) Toxicological profile for manganese. Agency for Toxic Substances and Disease Registry

  21. Kozlowski H, Kolkowska P, Watly J, Krzywoszynska K, Potocki S (2014) General aspects of metal toxicity. Curr Med Chem 21(33):3721–3740. https://doi.org/10.2174/0929867321666140716093838

    Article  CAS  PubMed  Google Scholar 

  22. Pereira CLV, Ximenes CF, Merlo E, Sciortino AS, Monteiro JS, Moreira A, Jacobsen BB, Graceli JB, Ginsburg KS, Ribeiro Junior RF, Bers DM, Stefanon I (2019) Cardiotoxicity of environmental contaminant tributyltin involves myocyte oxidative stress and abnormal Ca(2+) handling. Environ Pollut 247:371–382. https://doi.org/10.1016/j.envpol.2019.01.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee MCFE, Park JC, Yoon DS, Choi H, Kim M, Han J, Cho HS, Shin KH, Santos ML, Jung JH, Castro LFC (2019) Lee JS (2019) Tributyltin affects retinoid X receptor-mediated lipid metabolism in the marine rotifer Brachionus koreanus. Environ Sci Technol 53(13):7830–7839. https://doi.org/10.1021/acs.est.9b01359

    Article  CAS  PubMed  Google Scholar 

  24. Stossi F, Dandekar RD, Johnson H, Lavere P, Foulds CE, Mancini MG, Mancini MA (2019) Tributyltin chloride (TBT) induces RXRA down-regulation and lipid accumulation in human liver cells. PLoS One 14(11):e0224405. https://doi.org/10.1371/journal.pone.0224405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu J, Ou K, Chen C, Li B, Guo J, Zuo Z, Wang C (2019) Tributyltin exposure disturbs hepatic glucose metabolism in male mice. Toxicology 425:152242. https://doi.org/10.1016/j.tox.2019.152242

    Article  CAS  PubMed  Google Scholar 

  26. Ceotto Freitas-Lima L, Merlo E, Campos Zicker M, Navia-Pelaez JM, de Oliveira M, Dos Santos Aggum Capettini L (2018) Tributyltin impacts in metabolic syndrome development through disruption of angiotensin II receptor signaling pathways in white adipose tissue from adult female rats. Toxicol Lett 299:21–31. https://doi.org/10.1016/j.toxlet.2018.08.018

    Article  CAS  PubMed  Google Scholar 

  27. De Azevedo SV, Moreira FR, Campos RC (2013) Direct determination of tin in whole blood and urine by GF AAS. Clin Biochem 46(1-2):123–127. https://doi.org/10.1016/j.clinbiochem.2012.09.020

    Article  CAS  PubMed  Google Scholar 

  28. Lee MC, Fonseca E, Park JC, Yoon DS, Choi H, Kim M, Han J, Cho HS, Shin KH, Santos ML, Jung JH, Castro LFC, Lee JS (2019) Tributyltin affects retinoid X receptor-mediated lipid metabolism in the marine rotifer Brachionus koreanus. Environ Sci Technol 53(13):7830–7839. https://doi.org/10.1021/acs.est.9b01359

    Article  CAS  PubMed  Google Scholar 

  29. Liu B, Feng W, Wang J, Li Y, Han X, Hu H, Guo H, Zhang X, He M (2016) Association of urinary metals levels with type 2 diabetes risk in coke oven workers. Environ Pollut 210:1–8. https://doi.org/10.1016/j.envpol.2015.11.046

    Article  CAS  PubMed  Google Scholar 

  30. Ceotto Freitas-Lima L, Merlo E, Campos Zicker M, Navia-Pelaez JM, de Oliveira M, Dos Santos Aggum Capettini L, Nogueira CR, Versiani Matos Ferreira A, Sousa Santos SH, Bernardes Graceli J (2018) Tributyltin impacts in metabolic syndrome development through disruption of angiotensin II receptor signaling pathways in white adipose tissue from adult female rats. Toxicol Lett 299:21–31. https://doi.org/10.1016/j.toxlet.2018.08.018

    Article  CAS  PubMed  Google Scholar 

  31. Freitas EP, Cunha AT, Aquino SL, Pedrosa LF, Lima SC, Lima JG, Almeida MG, Sena-Evangelista KC (2017) Zinc status biomarkers and cardiometabolic risk factors in metabolic syndrome: a case control study. Nutrients 9(2). https://doi.org/10.3390/nu9020175

  32. Miao X, Sun W, Fu Y, Miao L, Cai L (2013) Zinc homeostasis in the metabolic syndrome and diabetes. Front Med 7(1):31–52. https://doi.org/10.1007/s11684-013-0251-9

    Article  PubMed  Google Scholar 

  33. Al-Daghri NM, Khan N, Alkharfy KM, Al-Attas OS, Alokail MS, Alfawaz HA, Alothman A, Vanhoutte PM (2013) Selected dietary nutrients and the prevalence of metabolic syndrome in adult males and females in Saudi Arabia: a pilot study. Nutrients 5(11):4587–4604. https://doi.org/10.3390/nu5114587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu Y, Cai Z, Zheng J, Chen J, Zhang X, Huang XF, Li D (2012) Serum levels of polyunsaturated fatty acids are low in Chinese men with metabolic syndrome, whereas serum levels of saturated fatty acids, zinc, and magnesium are high. Nutr Res 32(2):71–77. https://doi.org/10.1016/j.nutres.2011.12.004

    Article  CAS  PubMed  Google Scholar 

  35. Rotter I, Kosik-Bogacka D, Dołęgowska B, Safranow K, Lubkowska A, Laszczyńska M (2015) Relationship between the concentrations of heavy metals and bioelements in aging men with metabolic syndrome. Int J Environ Res Public Health 12(4):3944–3961. https://doi.org/10.3390/ijerph120403944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yary T, Virtanen JK, Ruusunen A, Tuomainen T-P, Voutilainen S (2017) Association between serum zinc and later development of metabolic syndrome in middle aged and older men: the Kuopio Ischaemic Heart Disease Risk Factor Study. Nutrition 37:43–47. https://doi.org/10.1016/j.nut.2016.09.004

    Article  CAS  PubMed  Google Scholar 

  37. Skalny AA, Tinkov AA, Medvedeva YS, Alchinova IB, Karganov MY, Ajsuvakova OP, Skalny AV, Nikonorov AA (2015) Zinc asparaginate supplementation induces redistribution of toxic trace elements in rat tissues and organs. Interdiscip Toxicol 8(3):131–138. https://doi.org/10.1515/intox-2015-0020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Greger JL, Johnson MA (1981) Effect of dietary tin on zinc. Copper and iron utilization in rats. Food Cosmetics Toxicol 19(2):163–166. https://doi.org/10.1016/0015-6264(81)90352-7

    Article  CAS  Google Scholar 

  39. Johnson MA, Baier MJ, Greger JL (1982) Effects of dietary tin on zinc, copper, iron, manganese, and magnesium metabolism of adult males. Am J Clin Nutr 35(6):1332–1338. https://doi.org/10.1093/ajcn/35.6.1332

    Article  CAS  PubMed  Google Scholar 

  40. Byrne C, Divekar SD, Storchan GB, Parodi DA, Martin MB (2013) Metals and breast cancer. J Mammary Gland Biol Neoplasia 18(1):63–73. https://doi.org/10.1007/s10911-013-9273-9

    Article  PubMed  PubMed Central  Google Scholar 

  41. Waalkes MP, Fox DA, States JC, Patierno SR, McCabe MJ Jr (2000) Metals and disorders of cell accumulation: modulation of apoptosis and cell proliferation. Toxicol Sci 56(2):255–261. https://doi.org/10.1093/toxsci/56.2.255

    Article  CAS  PubMed  Google Scholar 

  42. Forns J, Mandal S, Iszatt N, Polder A, Thomsen C, Lyche JL, Stigum H, Vermeulen R, Eggesbo M (2016) Novel application of statistical methods for analysis of multiple toxicants identifies DDT as a risk factor for early child behavioral problems. Environ Res 151:91–100. https://doi.org/10.1016/j.envres.2016.07.014

    Article  CAS  PubMed  Google Scholar 

  43. Dai L, Koutrakis P, Coull BA, Sparrow D, Vokonas PS, Schwartz JD (2016) Use of the adaptive LASSO method to identify PM2.5 components associated with blood pressure in elderly men: the Veterans Affairs Normative Aging Study. Environ Health Perspect 124(1):120–125. https://doi.org/10.1289/ehp.1409021

    Article  PubMed  Google Scholar 

  44. Grimes DA, Schulz KF (2002) Cohort studies: marching towards outcomes. Lancet (London, England) 359(9303):341–345. https://doi.org/10.1016/s0140-6736(02)07500-1

    Article  Google Scholar 

  45. Li L, Huang L, Huang S, Luo X, Zhang H, Mo Z, Wu T, Yang X (2020) Non-linear association of serum molybdenum and linear association of serum zinc with nonalcoholic fatty liver disease: multiple-exposure and Mendelian randomization approach. Sci Total Environ 720:137655. https://doi.org/10.1016/j.scitotenv.2020.137655

    Article  CAS  PubMed  Google Scholar 

  46. Yuan Z, Liu C, Tian Y, Zhang X, Ye H, Jin L, Ruan L, Sun Z, Zhu Y (2016) Higher levels of magnesium and lower levels of calcium in whole blood are positively correlated with the metabolic syndrome in a Chinese population: a case-control study. Ann Nutr Metab 69(2):125–134. https://doi.org/10.1159/000450761

    Article  CAS  PubMed  Google Scholar 

  47. Ge X, Wang F, Zhong Y, Lv Y, Jiang C, Zhou Y, Li D, Xia B, Su C, Cheng H, Ma Y, Xiong F, Shen Y, Zou Y, Yang X (2018) Manganese in blood cells as an exposure biomarker in manganese-exposed workers healthy cohort. J Trace Elem Med Biol 45:41–47. https://doi.org/10.1016/j.jtemb.2017.09.016

    Article  CAS  PubMed  Google Scholar 

  48. Satia JA, King IB, Morris JS, Stratton K, White E (2006) Toenail and plasma levels as biomarkers of selenium exposure. Ann Epidemiol 16(1):53–58. https://doi.org/10.1016/j.annepidem.2005.02.011

    Article  PubMed  Google Scholar 

  49. Laohaudomchok W, Lin X, Herrick RF, Fang SC, Cavallari JM, Christiani DC, Weisskopf MG (2011) Toenail, blood, and urine as biomarkers of manganese exposure. J Occup Environ Med 53(5):506–510. https://doi.org/10.1097/JOM.0b013e31821854da

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Akl EA, Briel M, You JJ, Sun X, Johnston BC, Busse JW, Mulla S, Lamontagne F, Bassler D, Vera C, Alshurafa M, Katsios CM, Zhou Q, Cukierman-Yaffe T, Gangji A, Mills EJ, Walter SD, Cook DJ, Schünemann HJ, Altman DG, Guyatt GH (2012) Potential impact on estimated treatment effects of information lost to follow-up in randomised controlled trials (LOST-IT): systematic review. BMJ (Clinical research ed) 344:e2809. https://doi.org/10.1136/bmj.e2809

    Article  Google Scholar 

Download references

Funding

This work was supported by the Guangxi Natural Science Fund for Innovation Research Team [grant numbers 2017GXNSFGA198003, 2013GXNSFFA019002]; the Program for New Century Excellent Talents in University [grant number NCET-12-0653]; and the Guangxi key Laboratory for Genomic and Personalized Medicine [grant numbers 19-050-22, 20-065-33].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Yang.

Ethics declarations

The study protocol was approved by the Ethics and Human Subject Committee of Guangxi Medical University. Written informed consent forms were obtained from all subjects prior to the study.

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Li, L., Huang, L. et al. Associations Between Serum Multiple Metals Exposures and Metabolic Syndrome: a Longitudinal Cohort Study. Biol Trace Elem Res 199, 2444–2455 (2021). https://doi.org/10.1007/s12011-020-02371-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02371-w

Keywords

Navigation