Skip to main content

Advertisement

Log in

Protective Effects of an Oxovanadium(IV) Complex with N2O2 Chelating Thiosemicarbazone on Small Intestine Injury of STZ-Diabetic Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

A Correction to this article was published on 20 August 2020

This article has been updated

Abstract

Vanadium compounds are being investigated as potential therapeutic agents in the treatment of many health problems, primarily diabetes. We aimed to provide the effect of N(1)-4-hydroxysalicylidene-N(4)-salicylidene-S-methyl-isothiosemicarbazidato-oxovanadium(IV) (VOL) on small intestinal injury in experimental male diabetic rats. Four groups were created of 3.0–3.5-month-old rats. The rats were made diabetic by a single dose of streptozotocin (STZ) at 65 mg/kg and grouped as follows: control animals, VOL-given control animals, STZ-induced diabetic animals and STZ-induced diabetic animals given VOL. A daily dose of 0.2 mM/kg vanadium complex was administered orally for 12 days after the inducement of diabetes. On the 12th day, small intestine tissue samples were taken. According to the data obtained from the biochemical analysis, reduced glutathione (GSH) level, catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), superoxide dismutase (SOD), Na+/K+-ATPase and paraoxanase (PON) activities were increased, whereas sialic acid (SA), xanthine oxidase (XO) and disaccharidases (maltase and saccharidase) activities were decreased in the small intestine tissue of VOL-treated diabetic rats. Microscopic examinations revealed a remarkable decrease in the mucosal necrotic areas, discontinuity in the brush border, deterioration of the villi integrity and oedema inside the villi, but with a mild decrease in the inflammatory cells, deterioration and loss of integrity of the gland in the small intestine of VOL-treated diabetic rats. Moreover, VOL treatment markedly decreased the proliferation of villus cells and especially inflammatory cells in the small intestine of diabetic rats. According to the obtained data, the administration of VOL is a potentially convenient strategy to reducing small intestine injury in diabetic rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  1. Lolak N, Akocak S, Türkeş C, Taslimi P, Işık M, Beydemir Ş, Gülçin İ, Durgun M (2020) Synthesis, characterization, inhibition effects, and molecular docking studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors of novel benzenesulfonamides incorporating 1,3,5-triazine structural motifs. Bioorg Chem 100:103897. https://doi.org/10.1016/j.bioorg.2020.103897

    Article  CAS  PubMed  Google Scholar 

  2. Artunc T, Menzek A, Taslimi P, Gulcin I, Kazaz C, Sahin E (2020) Synthesis and antioxidant activities of phenol derivatives from 1,6-bis (dimethoxyphenyl) hexane-1,6-dione. Bioorg Chem 100:103884. https://doi.org/10.1016/j.bioorg.2020.103884

    Article  CAS  PubMed  Google Scholar 

  3. Aktas A, Barut Celepci D, Gok Y, Taslimi P, Akincioglu H, Gulcin İ (2020) A novel Ag-N-heterocyclic carbene complex bearing the hydroxyethyl ligand: synthesis, characterization, crystal and spectral structures and bioactivity properties. Crystals. 10(3):171. https://doi.org/10.3390/cryst10030171

    Article  CAS  Google Scholar 

  4. Strain WD, Paldánius PM (2018) Diabetes, cardiovascular disease and the microcirculation. Cardiovasc Diabetol 17(1):57. https://doi.org/10.1186/s12933-018-0703-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yanardag R, Bolkent S, Karabulut-Bulan O, Tunali S (2003) Effects of vanadyl sulfate on kidney in experimental diabetes. Biol Trace Elem Res 95(1):73–85. https://doi.org/10.1385/BTER:95:1:73

    Article  CAS  PubMed  Google Scholar 

  6. Tunali S, Yanardag R (2006) Effect of vanadyl sulfate on the status of lipid parameters and on stomach and spleen tissues of streptozotocin-induced diabetic rats. Pharmacol Res 53(3):271–277. https://doi.org/10.1016/j.phrs.2005.12.004

    Article  CAS  PubMed  Google Scholar 

  7. Hex N, Bartlett C, Wright D, Taylor M, Varley D (2012) Estimating the current and future costs of Type 1 and Type 2 diabetes in the UK, including direct health costs and indirect societal and productivity costs. Diabet Med 29(7):855–862. https://doi.org/10.1111/j.1464-5491.2012.03698.x

    Article  CAS  PubMed  Google Scholar 

  8. Mukherjee S, Chattopadhyay M, Bhattacharya S, Dasgupta S, Hussain S, Bharadwaj SK, Talukdar D, Usmani A, Pradhan BS, Majumdar SS, Chattopadhyay P, Mukhopadhyay S, Maity TK, Chaudhuri MK, Bhattacharya S (2017) A small insulinomimetic molecule also improves insulin sensitivity in diabetic mice. PLoS One 12(1):e0169809. https://doi.org/10.1371/journal.pone.0169809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gotfried J, Priest S, Schey R (2017) Diabetes and the small intestine. Curr Treat Options Gastroenterol 15(4):490–507. https://doi.org/10.1007/s11938-017-0155-x

    Article  PubMed  Google Scholar 

  10. Gulcin İ (2020) Antioxidants and antioxidant methods: an updated overview. Arch Toxicol 94(3):651–715. https://doi.org/10.1007/s00204-020-02689-3

    Article  CAS  PubMed  Google Scholar 

  11. Gülçin İ, Görenb AC, Taslimid P, Alwasele SH, Kılıc O, Bursal E (2020) Anticholinergic, antidiabetic and antioxidant activities of Anatolian pennyroyal (Mentha pulegium)-analysis of its polyphenol contents by LC-MS/MS. Biocatal Agric Biotechnol 23:101441. https://doi.org/10.1016/j.bcab.2019.101441

    Article  Google Scholar 

  12. Bhor V, Raghuram N, Sivakami S (2004) Oxidative damage and altered antioxidant enzyme activities in the small intestine of streptozotocin-induced diabetic rats. Int J Biochem Cell Biol 36(1):89–97. https://doi.org/10.1016/s1357-2725(03)00142-0

    Article  CAS  PubMed  Google Scholar 

  13. Itoh H, Naganuma S, Takeda N, Miyata S, Uchinokura S, Fukushima T, Uchiyama S, Tanaka H, Nagaike K, Shimomura T, Miyazawa K, Yamada G, Kitamura N, Koono M, Kataoka H (2004) Regeneration of injured intestinal mucosa is impaired in hepatocyte growth factor activator-deficient mice. Gastroenterology 127(5):1423–1435. https://doi.org/10.1053/j.gastro.2004.08.027

    Article  CAS  PubMed  Google Scholar 

  14. Malik A, Morya RK, Bhadada SK, Rana S (2018) Type 1 diabetes mellitus: complex interplay of oxidative stress, cytokines, gastrointestinal motility and small intestinal bacterial overgrowth. Eur J Clin Investig 48(11):e13021. https://doi.org/10.1111/eci.13021

    Article  CAS  Google Scholar 

  15. Ordog T (2008) Interstitial cells of Cajal in diabetic gastroenteropathy. Neurogastroenterol Motil 20(1):8–18. https://doi.org/10.1111/j.1365-2982.2007.01056.x

    Article  CAS  PubMed  Google Scholar 

  16. Sanna D, Ugone V, Serra M, Garribba E (2017) Speciation of potential anti-diabetic vanadium complexes in real serum samples. J Inorg Biochem 173:52–65. https://doi.org/10.1016/j.jinorgbio.2017.04.023

    Article  CAS  PubMed  Google Scholar 

  17. Treviño S, Diaz A (2020) Vanadium and insulin: Partners in metabolic regulation. J Inorg Biochem 208:111094. https://doi.org/10.1016/j.jinorgbio.2020.111094

    Article  CAS  PubMed  Google Scholar 

  18. Niu X, Xiao R, Wang N, Wang Z, Zhang Y, Xia Q, Yang X (2016) The molecular mechanisms and rational design of anti-diabetic vanadium compounds. Curr Top Med Chem 16:811–822. https://doi.org/10.2174/1568026615666150827094652

    Article  CAS  PubMed  Google Scholar 

  19. Xie MJ, Yang XD, Liu WP, Yan SP, Meng ZH (2010) Insulin-enhancing activity of a dinuclear vanadium complex: 5-chloro-salicylaldhyde ethylenediamine oxovanadium(V) and its permeability and cytotoxicity. J Inorg Biochem 104(8):851–857. https://doi.org/10.1016/j.jinorgbio.2010.03.018

    Article  CAS  PubMed  Google Scholar 

  20. Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E (2019) Vanadium in biological action: chemical, pharmacological aspects, and metabolic implications in diabetes mellitus. Biol Trace Elem Res 188(1):68–98. https://doi.org/10.1007/s12011-018-1540-6

    Article  CAS  PubMed  Google Scholar 

  21. Sidorova YS, Zorin SN, Petrov NA, Shumakova AA, Frolova YV, Mazo VK (2020) Effect of vanadium complex with enzymatic hydrolysate of soy protein on carbohydrate and lipid metabolism disorders in male Wistar rats. Bull Exp Biol Med 168(5):637–640. https://doi.org/10.1007/s10517-020-04769-x

    Article  CAS  PubMed  Google Scholar 

  22. Tunali S, Yanardag R (2013) Protective effect of vanadyl sulfate on skin injury in streptozotocin-induced diabetic rats. Hum Exp Toxicol 32(11):1206–1212. https://doi.org/10.1177/0960327113478445

    Article  CAS  PubMed  Google Scholar 

  23. Koyuturk M, Tunali S, Bolkent S, Yanardag R (2005) Effects of vanadyl sulfate on liver of streptozotocin-induced diabetic rats. Biol Trace Elem Res 104(3):233–247. https://doi.org/10.1385/BTER:104:3:233

    Article  CAS  PubMed  Google Scholar 

  24. Ramachandran E, Thomas SP, Poornima P, Kalaivani P, Prabhakaran R, Padma VV, Natarajan K (2012) Evaluation of DNA binding, antioxidant and cytotoxic activity of mononuclear Co(III) complexes of 2-oxo-1,2-dihydrobenzo[h]quinoline-3-carbaldehyde thiosemicarbazones. Eur J Med Chem 50:405–415. https://doi.org/10.1016/j.ejmech.2012.02.026

    Article  CAS  PubMed  Google Scholar 

  25. Bal-Demirci T, Şahin M, Kondakçı E, Özyürek M, Ülküseven B, Apak R (2015) Synthesis and antioxidant activities of transition metal complexes based 3-hydroxysalicylaldehyde-S-methylthiosemicarbazone. Spectrochim Acta A Mol Biomol Spectrosc 138:866–872. https://doi.org/10.1016/j.saa.2014.10.088

    Article  CAS  PubMed  Google Scholar 

  26. Chaves OA, de Castro IS, Goulart CM, Bellieny MSS, Netto-Ferreira JC, Echevarria-Lima J, Echevarria A (2019) In vitro and in vivo cytotoxic activity and human serum albumin interaction for a methoxy-styryl-thiosemicarbazone. Investig New Drugs 37(5):994–1005. https://doi.org/10.1007/s10637-018-00722-y

    Article  CAS  Google Scholar 

  27. Bal T, Atasever B, Solakoğlu Z, Erdem-Kuruca S, Ulküseven B (2007) Synthesis, characterisation and cytotoxic properties of the N1,N4-diarylidene-S-methyl-thiosemicarbazone chelates with Fe(III) and Ni(II). Eur J Med Chem 42(2):161–167. https://doi.org/10.1016/j.ejmech.2006.09.004

    Article  CAS  PubMed  Google Scholar 

  28. Guo H, Lu J, Ruan Z, Zhang Y, Liu Y, Zang L, Jiang J, Huang J (2012) Synthesis, DNA-binding, cytotoxicity, and cleavage studies of unsymmetrical oxovanadium complexes. J Coord Chem 65:191–204. https://doi.org/10.1080/00958972.2011.645204

    Article  CAS  Google Scholar 

  29. Benítez J, Becco L, Correia I, Leal SM, Guiset H, Pessoa JC, Lorenzo J, Tanco S, Escobar P, Moreno V, Garat B, Gambino D (2011) Vanadium polypyridyl compounds as potential antiparasitic and antitumoral agents: new achievements. J Inorg Biochem 105(2):303–312. https://doi.org/10.1016/j.jinorgbio.2010.11.001

    Article  CAS  PubMed  Google Scholar 

  30. Yanardag R, Demirci TB, Ulküseven B, Bolkent S, Tunali S, Bolkent S (2009) Synthesis, characterization and antidiabetic properties of N(1)-2,4-dihydroxybenzylidene-N(4)-2-hydroxybenzylidene-S-methyl-thiosemicarbazidato-oxovanadium(IV). Eur J Med Chem 44(2):818–826. https://doi.org/10.1016/j.ejmech.2008.04.023

    Article  CAS  PubMed  Google Scholar 

  31. Matsa R, Makam P, Kaushik M, Hoti SL, Kannan T (2019) Thiosemicarbazone derivatives: design, synthesis and in vitro antimalarial activity studies. Eur J Pharm Sci 137:104986. https://doi.org/10.1016/j.ejps.2019.104986

    Article  CAS  PubMed  Google Scholar 

  32. Summers KL (2019). A structural chemistry perspective on the antimalarial properties of thiosemicarbazone metal complexes. Mini Rev Med Chem 19(7):569–590. https://doi.org/10.2174/1389557518666181015152657

  33. Padmanabhan P, Khaleefathullah S, Kaveri K, Palani G, Ramanathan G, Thennarasu S, Tirichurapalli Sivagnanam U (2017) Antiviral activity of thiosemicarbazones derived from α-amino acids against Dengue virus. J Med Virol 89(3):546–552. https://doi.org/10.1002/jmv.24655

  34. Trotsko N, Kosikowska U, Paneth A, Plech T, Malm A, Wujec M (2018) Synthesis and antibacterial activity of new thiazolidine-2,4-dione-based chlorophenylthiosemicarbazone hybrids. Molecules 23(5):1023. https://doi.org/10.3390/molecules23051023

    Article  CAS  PubMed Central  Google Scholar 

  35. Mrozek-Wilczkiewicz A, Malarz K, Rejmund M, Polanski J, Musiol R (2019) Anticancer activity of the thiosemicarbazones that are based on di-2-pyridine ketone and quinoline moiety. Eur J Med Chem 171:180–194. https://doi.org/10.1016/j.ejmech.2019.03.027

    Article  CAS  PubMed  Google Scholar 

  36. Anjum R, Palanimuthu D, Kalinowski DS, Lewis W, Park KC, Kovacevic Z, Khan IU, Richardson DR (2019) Synthesis, characterization, and in vitro anticancer activity of copper and zinc bis (thiosemicarbazone) complexes. Inorg Chem 58(20):13709–13723. https://doi.org/10.1021/acs.inorgchem.9b01281

    Article  CAS  PubMed  Google Scholar 

  37. Benítez J, Guggeri L, Tomaz I, Arrambide G, Navarro M, Costa Pessoa J, Garat B, Gambino D (2009) Design of vanadium mixed-ligand complexes as potential anti-protozoa agents. J Inorg Biochem 103(4):609–616. https://doi.org/10.1016/j.jinorgbio.2008.10.018

    Article  CAS  PubMed  Google Scholar 

  38. Jound A, Lambert E, Stauffacher W, Renold AE (1969) Diabetogenic action of streptozotocin. Relationship of dose to metabolic response. J Clin Invest 48:2129–2139. https://doi.org/10.1172/JCI106180

    Article  Google Scholar 

  39. Relander A, Raiha CE (1963) Differences between the enzymatic and toluidine methods of blood glucose determination. Scand J Clin Lab Invest 15:221–224

    Article  CAS  Google Scholar 

  40. Beutler E (1975) Glutathione in red blood cell metabolism. In: A manual of biochemical methods, 2nd ed. Grune and Stratton, New York, pp 112–114

    Google Scholar 

  41. Warren L (1959) The thiobarbituric acid assay of sialic acids. J Biol Chem 234:1971–1975

    Article  CAS  PubMed  Google Scholar 

  42. Lowry OH, Rosebrough WI, Farr AL, Randal RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  43. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/s0076-6879(84)05016-3

    Article  CAS  PubMed  Google Scholar 

  44. Paglia DE, Valentine WN (1967) Studies on the quantitative and quantitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–168

    CAS  PubMed  Google Scholar 

  45. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333. https://doi.org/10.1016/s0076-6879(81)77046-0

    Article  CAS  PubMed  Google Scholar 

  46. Habig WH, Jacoby WB (1981) Assays for differentiation of glutathione-S-transferases. Methods Enzymol 77:398–405. https://doi.org/10.1016/s0076-6879(81)77053-8

    Article  CAS  PubMed  Google Scholar 

  47. Mylroie AA, Collins AH, Umbles C, Kyle J (1986) Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicol Appl Pharmacol 82:512–520. https://doi.org/10.1016/0041-008x(86)90286-3

    Article  CAS  PubMed  Google Scholar 

  48. Ridderstap AS, Bonting SL (1969) Na+-K+-activated ATPase and exocrine pancreatic secretion in vitro. Am J Phys 217:1721–1727. https://doi.org/10.1152/ajplegacy.1969.217.6.1721

    Article  CAS  Google Scholar 

  49. Furlong CE, Richter RJ, Seidel SL, Motulsky AG (1988) Role of genetic polymorphism of human plasma paraoxonase/arylesterase in hydrolysis of the insecticide metabolites chlorpyrifos oxon and paraoxon. Am J Hum Genet 43:230–238

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Corte ED, Stirpe F (1968) Regulation of xanthine oxidase in rat liver: modifications of the enzyme activity of rat liver supernatant on the storage at 20 degrees. Biochem J 108:349–351. https://doi.org/10.1042/bj1080349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dahlqvist A (1968) Assay of intestinal disaccharidases. Anal Biochem 22(1):99–107. https://doi.org/10.1016/0003-2697(68)90263-7

    Article  CAS  PubMed  Google Scholar 

  52. Pillai SI, Subramanian SP, Kandaswamy M (2013) Evaluation of antioxidant efficacy of vanadium-3-hydroxyflavone complex in streptozotocin-diabetic rats. Chem Biol Interact 204(2):67–74. https://doi.org/10.1016/j.cbi.2013.04.012

    Article  CAS  PubMed  Google Scholar 

  53. Akgün-Dar K, Bolkent S, Yanardag R, Tunali S (2007) Vanadyl sulfate protects against streptozotocin-induced morphological and biochemical changes in rat aorta. Cell Biochem Funct 25(6):603–609. https://doi.org/10.1027/cbf.1354

    Article  CAS  PubMed  Google Scholar 

  54. Yanardag R, Tunali S (2006) Vanadyl sulfate administration protects the streptozotocin-induced oxidative damage to brain tissue in rats. Mol Cell Biochem 286(1-2):153–159. https://doi.org/10.1007/s11010-005-9107-1

    Article  CAS  PubMed  Google Scholar 

  55. Siddiqui MR, Taha A, Moorthy K, Hussain ME, Basir SF, Baquer NZ (2005) Amelioration of altered antioxidant status and membrane linked functions by vanadium and Trigonella in alloxan diabetic rat brains. J Biosci 30(4):483–490. https://doi.org/10.1007/BF02703722

    Article  CAS  PubMed  Google Scholar 

  56. Forman HJ, Zhang H, Rinna A (2009) Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Asp Med 30(1-2):1–12. https://doi.org/10.1016/j.mam.2008.08.006

    Article  CAS  Google Scholar 

  57. Khalili P, Sundström J, Jendle J, Lundin F, Jungner I, Nilsson PM (2014) Sialic acid and incidence of hospitalization for diabetes and its complications during 40-years of follow-up in a large cohort: the Värmland survey. Prim Care Diabetes 8(4):352–357. https://doi.org/10.1016/j.pcd.2014.06.002

    Article  PubMed  Google Scholar 

  58. Miyazaki Y, Kawano H, Yoshida T, Miyamoto S, Hokamaki J, Nagayoshi Y, Yamabe H, Nakamura H, Yodoi J, Ogawa H (2007) Pancreatic B-cell function is altered by oxidative stress induced by acute hyperglycaemia. Diabet Med 24(2):154–160. https://doi.org/10.1111/j.1464-5491.2007.02058.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Aragno M, Brignardello E, Tamagno E, Gatto V, Danni O, Boccuzzi G (1997) Dehydroepiandrosterone administration prevents the oxidative damage induced by acute hyperglycemia in rats. J Endocrinol 155(2):233–240. https://doi.org/10.1677/joe.0.1550233

    Article  CAS  PubMed  Google Scholar 

  60. Lapenna D, Ciofani G, Calafiore AM, Cipollone F, Porreca E (2018) Impaired glutathione-related antioxidant defenses in the arterial tissue of diabetic patients. Free Radic Biol Med 124:525–531. https://doi.org/10.1016/j.freeradbiomed.2018.06.033

    Article  CAS  PubMed  Google Scholar 

  61. Morsy MD, Abdel-Razek HA, Osman OM (2011) Effect of vanadium on renal Na+, K+-ATPase activity in diabetic rats: a possible role of leptin. J Physiol Biochem 67(1):61–69. https://doi.org/10.1007/s13105-010-0049-z

    Article  CAS  PubMed  Google Scholar 

  62. Bełtowski J, Jamroz-Wiśniewska A, Borkowska E, Nazar J, Marciniak A (2005) Antioxidant treatment normalizes renal Na+, K+-ATPase activity in leptin-treated rats. Pharmacol Rep 57(2):219–228

    PubMed  Google Scholar 

  63. Ayan D, Şeneş M, Çaycı AB, Söylemez S, Eren N, Altuntaş Y, Öztürk FY (2019) Evaluation of paraoxonase, arylesterase, and homocysteine thiolactonase activities in patients with diabetes and incipient diabetes nephropathy. J Med Biochem 38(4):481–488. https://doi.org/10.2478/jomb-2019-0014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ibrahim IA, Khwanes SA, El-Desouky MA, Elhakim HKA (2019) Propolis relieves the cardiotoxicity of chlorpyrifos in diabetic rats via alleviations of paraoxonase-1 and xanthine oxidase genes expression. Pestic Biochem Physiol 159:127–135. https://doi.org/10.1016/j.pestbp.2019.06.006

    Article  CAS  PubMed  Google Scholar 

  65. Penislusshiyan S, Chitra L, Ancy I, Kumaradhas P, Palvannan T (2020) Novel antioxidant astaxanthin-s-allyl cysteine biconjugate diminished oxidative stress and mitochondrial dysfunction to triumph diabetes in rat model. Life Sci 245:117367. https://doi.org/10.1016/j.lfs.2020.117367

    Article  CAS  PubMed  Google Scholar 

  66. Dyer J, Wood IS, Palejwala A, Ellis A, Shirazi-Beechey SP (2002) Expression of monosaccharide transporters in intestine of diabetic humans. Am J Physiol Gastrointest Liver Physiol 282:G241–G248. https://doi.org/10.1152/ajpgi.00310.2001

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Scientific Research Projects Coordination Unit of Istanbul University, Project Number: BEK-2016-22294.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevim Tunali.

Ethics declarations

Conflict of Interest

The authors declare that there is no any conflict of interest.

Ethics Approval

Experiments were reviewed and approved according to the Animal Care and Use Institute’s Committee of Istanbul University.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article unfortunately contained a mistake. In Table 2, last column, the header should be Na+/K+-ATPase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tunali, S., Gezginci-Oktayoglu, S., Bolkent, S. et al. Protective Effects of an Oxovanadium(IV) Complex with N2O2 Chelating Thiosemicarbazone on Small Intestine Injury of STZ-Diabetic Rats. Biol Trace Elem Res 199, 1515–1523 (2021). https://doi.org/10.1007/s12011-020-02269-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02269-7

Keywords

Navigation