Skip to main content
Log in

Curcumin and Selenium Prevent Lipopolysaccharide/Diclofenac-Induced Liver Injury by Suppressing Inflammation and Oxidative Stress

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Diclofenac (DCL), an anti-inflammatory drug used to reduce pain and inflammation, ranks in the top causes of drug-induced liver injury. The inflammatory stress induced by inflammagens is implicated in DCL-induced liver injury. Curcumin (CUR) and selenium (Se) possess anti-inflammatory effects; therefore, this study evaluated their protective potential against lipopolysaccharide (LPS)/DCL-induced liver injury. Rats received CUR and/or Se for 7 days followed by a single intravenous administration of LPS 2 h before a single injection of DCL and two other doses of CUR and/or Se 2 and 8 h after DCL. Administration of nontoxic doses of LPS and DCL resulted in liver damage evidenced by the significantly elevated liver function markers in serum. LPS/DCL-induced liver injury was confirmed by histological alterations, increased lipid peroxidation and nitric oxide, and diminished glutathione and superoxide dismutase. CUR and/or Se prevented liver injury, histological alterations, and oxidative stress and boosted antioxidant defenses in LPS/DCL-induced rats. In addition, CUR and/or Se reduced serum C-reactive protein, liver pro-inflammatory cytokines, and the expression of TLR4, NF-κB, JNK, and p38, and upregulated heme oxygenase-1 (HO-1). In conclusion, CUR and/or Se mitigated LPS/DCL-induced liver injury in rats by suppressing TLR4 signaling, inflammation, and oxidative stress and boosting HO-1 and other antioxidants. Therefore, CUR and Se can hinder the progression and severity of liver injury during acute inflammatory episodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nouri A, Heidarian E, Nikoukar M (2017) Effects of N-acetyl cysteine on oxidative stress and TNF-α gene expression in diclofenac-induced hepatotoxicity in rats. Toxicol Mechan Methods 27(8):561–567

    Article  CAS  Google Scholar 

  2. Tang W (2003) The metabolism of diclofenac-enzymology and toxicology perspectives. Curr Drug Metab 4(4):319–329

    Article  CAS  PubMed  Google Scholar 

  3. Moreno-Sanchez R, Bravo C, Vasquez C, Ayala G, Silveira LH, Martinez-Lavin M (1999) Inhibition and uncoupling of oxidative phosphorylation by nonsteroidal anti-inflammatory drugs: study in mitochondria, submitochondrial particles, cells, and whole heart. Biochem Pharmacol 57(7):743–752

    Article  CAS  PubMed  Google Scholar 

  4. Mahmoud AM, Germoush MO, Alotaibi MF, Hussein OE (2017) Possible involvement of Nrf2 and PPARgamma up-regulation in the protective effect of umbelliferone against cyclophosphamide-induced hepatotoxicity. Biomed Pharmacother 86:297–306

    Article  CAS  PubMed  Google Scholar 

  5. Elgebaly HA, Mosa NM, Allach M, El-Massry KF, El-Ghorab AH, Al Hroob AM, Mahmoud AM (2018) Olive oil and leaf extract prevent fluoxetine-induced hepatotoxicity by attenuating oxidative stress, inflammation and apoptosis. Biomed Pharmacother 98:446–453

    Article  CAS  PubMed  Google Scholar 

  6. Hamesch K, Borkham-Kamphorst E, Strnad P, Weiskirchen R (2015) Lipopolysaccharide-induced inflammatory liver injury in mice. Laboratory Animals 49(1 Suppl):37–46

    Article  CAS  PubMed  Google Scholar 

  7. Ranneh Y, Akim AM, Hamid HA, Khazaai H, Fadel A, Mahmoud AM (2019) Stingless bee honey protects against lipopolysaccharide induced-chronic subclinical systemic inflammation and oxidative stress by modulating Nrf2, NF-κB and p38 MAPK. Nutr Metab 16:15

    Article  Google Scholar 

  8. Deng X, Stachlewitz RF, Liguori MJ, Blomme EA, Waring JF, Luyendyk JP, Maddox JF, Ganey PE, Roth RA (2006) Modest inflammation enhances diclofenac hepatotoxicity in rats: role of neutrophils and bacterial translocation. The Journal of pharmacology and experimental therapeutics 319(3):1191–1199

    Article  CAS  PubMed  Google Scholar 

  9. Kishida T, Onozato T, Kanazawa T, Tanaka S, Kuroda J (2012) Increase in covalent binding of 5-hydroxydiclofenac to hepatic tissues in rats co-treated with lipopolysaccharide and diclofenac: involvement in the onset of diclofenac-induced idiosyncratic hepatotoxicity. J Toxicol Sci 37(6):1143–1156

    Article  CAS  PubMed  Google Scholar 

  10. Song DH, Lee JO (2012) Sensing of microbial molecular patterns by toll-like receptors. Immunol Rev 250(1):216–229

    Article  CAS  PubMed  Google Scholar 

  11. Kenny EF, O’Neill LA (2008) Signalling adaptors used by toll-like receptors: an update. Cytokine 43(3):342–349

    Article  CAS  PubMed  Google Scholar 

  12. Correia MA, Sinclair PR, De Matteis F (2011) Cytochrome P450 regulation: the interplay between its heme and apoprotein moieties in synthesis, assembly, repair, and disposal. Drug Metab Rev 43(1):1–26

    Article  CAS  PubMed  Google Scholar 

  13. ALHaithloul HAS, Alotaibi MF, Bin-Jumah M, Elgebaly H, Mahmoud AM (2019) Olea europaea leaf extract up-regulates Nrf2/ARE/HO-1 signaling and attenuates cyclophosphamide-induced oxidative stress, inflammation and apoptosis in rat kidney. Biomed Pharmacother 111:676–685

    Article  CAS  PubMed  Google Scholar 

  14. Mahmoud AM, Germoush MO, Al-Anazi KM, Mahmoud AH, Farah MA, Allam AA (2018) Commiphora molmol protects against methotrexate-induced nephrotoxicity by up-regulating Nrf2/ARE/HO-1 signaling. Biomed Pharmacother 106:499–509

    Article  CAS  PubMed  Google Scholar 

  15. Nakahira K, Takahashi T, Shimizu H, Maeshima K, Uehara K, Fujii H, Nakatsuka H, Yokoyama M, Akagi R, Morita K (2003) Protective role of heme oxygenase-1 induction in carbon tetrachloride-induced hepatotoxicity. Biochem Pharmacol 66(6):1091–1105

    Article  CAS  PubMed  Google Scholar 

  16. Abd El-Twab SM, Hozayen WG, Hussein OE, Mahmoud AM (2016) 18beta-Glycyrrhetinic acid protects against methotrexate-induced kidney injury by up-regulating the Nrf2/ARE/HO-1 pathway and endogenous antioxidants. Ren Fail 38(9):1516–1527

    Article  CAS  PubMed  Google Scholar 

  17. Kamel EM, Mahmoud AM, Ahmed SA, Lamsabhi AM (2016) A phytochemical and computational study on flavonoids isolated from Trifolium resupinatum L. and their novel hepatoprotective activity. Food Funct 7(4):2094–2106

    Article  CAS  PubMed  Google Scholar 

  18. Mahmoud AM, Wilkinson FL, Jones AM, Wilkinson JA, Romero M, Duarte J, Alexander MY (2017) A novel role for small molecule glycomimetics in the protection against lipid-induced endothelial dysfunction: involvement of Akt/eNOS and Nrf2/ARE signaling. Biochim Biophys Acta 1861(1 Pt A):3311–3322

    Article  CAS  Google Scholar 

  19. Mahmoud AM, Wilkinson FL, McCarthy EM, Moreno-Martinez D, Langford-Smith A, Romero M, Duarte J, Alexander MY (2017) Endothelial microparticles prevent lipid-induced endothelial damage via Akt/eNOS signaling and reduced oxidative stress. FASEB J 31(10):4636–4648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kaur G, Tirkey N, Bharrhan S, Chanana V, Rishi P, Chopra K (2006) Inhibition of oxidative stress and cytokine activity by curcumin in amelioration of endotoxin-induced experimental hepatoxicity in rodents. Clin Exp Immunol 145(2):313–321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Mahmoud AM, Ahmed OM, Galaly SR (2014) Thymoquinone and curcumin attenuate gentamicin-induced renal oxidative stress, inflammation and apoptosis in rats. EXCLI J 13:98–110

    PubMed Central  PubMed  Google Scholar 

  22. Galaly SR, Ahmed OM, Mahmoud AM (2014) Thymoquinone and curcumin prevent gentamicin-induced liver injury by attenuating oxidative stress, inflammation and apoptosis. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society 65(6):823–832

    CAS  Google Scholar 

  23. Abdel-Daim MM, Abdou RH (2015) Protective effects of diallyl sulfide and curcumin Separately against thallium-induced toxicity in rats. Cell journal 17(2):379–388

    PubMed Central  PubMed  Google Scholar 

  24. Abdel-Diam MM, Samak DH, El-Sayed YS, Aleya L, Alarifi S, Alkahtani S (2019) Curcumin and quercetin synergistically attenuate subacute diazinon-induced inflammation and oxidative neurohepatic damage, and acetylcholinesterase inhibition in albino rats. Environ Sci Pollut Res Int 26(4):3659–3665

    Article  CAS  PubMed  Google Scholar 

  25. Youn HS, Saitoh SI, Miyake K, Hwang DH (2006) Inhibition of homodimerization of toll-like receptor 4 by curcumin. Biochem Pharmacol 72(1):62–69

    Article  CAS  PubMed  Google Scholar 

  26. Vashisht M, Rani P, Sunita OSK, Singh D (2018) Curcumin primed exosomes reverses LPS-induced pro-inflammatory gene expression in buffalo granulosa cells. J Cell Biochem 119(2):1488–1500

    Article  CAS  PubMed  Google Scholar 

  27. Ma F, Liu F, Ding L, You M, Yue H, Zhou Y, Hou Y (2017) Anti-inflammatory effects of curcumin are associated with down regulating microRNA-155 in LPS-treated macrophages and mice. Pharm Biol 55(1):1263–1273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Biswas SK, McClure D, Jimenez LA, Megson IL, Rahman I (2005) Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. Antioxidants & redox signaling 7(1-2):32–41

    Article  CAS  Google Scholar 

  29. Wang N, Tan HY, Li S, Xu Y, Guo W, Feng Y (2017) Supplementation of micronutrient selenium in metabolic diseases: its role as an antioxidant. Oxidative medicine and cellular longevity 2017:7478523

    PubMed Central  PubMed  Google Scholar 

  30. Duntas LH (2009) Selenium and inflammation: underlying anti-inflammatory mechanisms. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme 41(6):443–447

    Article  CAS  PubMed  Google Scholar 

  31. Finley JW (2006) Bioavailability of selenium from foods. Nutr Rev 64(3):146–151

    Article  PubMed  Google Scholar 

  32. Vunta H, Davis F, Palempalli UD, Bhat D, Arner RJ, Thompson JT, Peterson DG, Reddy CC, Prabhu KS (2007) The anti-inflammatory effects of selenium are mediated through 15-deoxy-Delta12,14-prostaglandin J2 in macrophages. J Biol Chem 282(25):17964–17973

    Article  CAS  PubMed  Google Scholar 

  33. Sun LH, Pi DA, Zhao L, Wang XY, Zhu LY, Qi DS, Liu YL (2017) Response of selenium and selenogenome in immune tissues to LPS-induced inflammatory reactions in pigs. Biol Trace Element Res 177(1):90–96

    Article  CAS  Google Scholar 

  34. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  CAS  Google Scholar 

  35. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126(1):131–138

    Article  CAS  PubMed  Google Scholar 

  36. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  CAS  PubMed  Google Scholar 

  37. Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34(3):497–500

    Article  CAS  PubMed  Google Scholar 

  38. Al-Rasheed NM, Al-Rasheed NM, Hasan IH, Al-Amin MA, Al-Ajmi HN, Mahmoud AM (2016) Sitagliptin attenuates cardiomyopathy by modulating the JAK/STAT signaling pathway in experimental diabetic rats. Drug Des Dev Ther 10:2095–2107

    Article  CAS  Google Scholar 

  39. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  40. Kasztelan-Szczerbińska B, Słomka M, Celiński K, Cichoż-Lach H (2010) Non-steroidal anti-inflammatory drugs – potential risks and benefits in the gastrointestinal tract distal to the ligament of Treitz. Gastroenterology Review/Przegląd Gastroenterologiczny 5(3):145–150

    Google Scholar 

  41. Sayed MM, El-Kordy EA (2014) The protective effect of curcumin on paracetamol-induced liver damage in adult male rabbits: biochemical and histological studies. Egypt J Histol 37(4):629–639

    Article  Google Scholar 

  42. Singh DP, Borse SP, Rana R, Nivsarkar M (2017) Curcumin, a component of turmeric, efficiently prevents diclofenac sodium-induced gastroenteropathic damage in rats: a step towards translational medicine. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 108(Pt A):43–52

    Article  CAS  Google Scholar 

  43. Ben Amara I, Soudani N, Troudi A, Bouaziz H, Boudawara T, Zeghal N (2011) Antioxidant effect of vitamin E and selenium on hepatotoxicity induced by dimethoate in female adult rats. Ecotoxicol Environ Saf 74(4):811–819

    Article  CAS  PubMed  Google Scholar 

  44. Zhang R, Liu Y, Xing L, Zhao N, Zheng Q, Li J, Bao J (2018) The protective role of selenium against cadmium-induced hepatotoxicity in laying hens: expression of Hsps and inflammation-related genes and modulation of elements homeostasis. Ecotoxicol Environ Saf 159:205–212

    Article  CAS  PubMed  Google Scholar 

  45. Soudani N, Ben Amara I, Sefi M, Boudawara T, Zeghal N (2011) Effects of selenium on chromium (VI)-induced hepatotoxicity in adult rats. Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie 63(6):541–548

    Article  CAS  Google Scholar 

  46. Küper C, Beck F-X, Neuhofer W (2012) Toll-like receptor 4 activates NF-κB and MAP kinase pathways to regulate expression of proinflammatory COX-2 in renal medullary collecting duct cells. Am J Physiol-Renal Physiol 302(1):F38–F46

    Article  CAS  PubMed  Google Scholar 

  47. Lee EH, Oh JH, Selvaraj S, Park SM, Choi MS, Spanel R, Yoon S, Borlak J (2016) Immunogenomics reveal molecular circuits of diclofenac induced liver injury in mice. Oncotarget 7(12):4983–5017

    Article  Google Scholar 

  48. Adams DH, Ju C, Ramaiah SK, Uetrecht J, Jaeschke H (2010) Mechanisms of immune-mediated liver injury. Toxicological sciences : an official journal of the Society of Toxicology 115(2):307–321

    Article  CAS  Google Scholar 

  49. Wang L, Li N, Lin D, Zang Y (2017) Curcumin protects against hepatic ischemia/reperfusion induced injury through inhibiting TLR4/NF-κB pathway. Oncotarget 8(39):65414–65420

    Article  PubMed Central  PubMed  Google Scholar 

  50. Ni H, Jin W, Zhu T, Wang J, Yuan B, Jiang J, Liang W, Ma Z (2015) Curcumin modulates TLR4/NF-kappaB inflammatory signaling pathway following traumatic spinal cord injury in rats. J Spinal Cord Med 38(2):199–206

    Article  PubMed Central  PubMed  Google Scholar 

  51. Zhang Z, Gao X, Cao Y, Jiang H, Wang T, Song X, Guo M, Zhang N (2015) Selenium deficiency facilitates inflammation through the regulation of TLR4 and TLR4-related signaling pathways in the mice uterus. Inflammation 38(3):1347–1356

    Article  CAS  PubMed  Google Scholar 

  52. Kim SH, Johnson VJ, Shin TY, Sharma RP (2004) Selenium attenuates lipopolysaccharide-induced oxidative stress responses through modulation of p38 MAPK and NF-kappaB signaling pathways. Experimental biology and medicine (Maywood, NJ) 229(2):203–213

    Article  CAS  Google Scholar 

  53. Wang H, Bi C, Wang Y, Sun J, Meng X, Li J (2018) Selenium ameliorates Staphylococcus aureus-induced inflammation in bovine mammary epithelial cells by inhibiting activation of TLR2, NF-κB and MAPK signaling pathways. BMC Veterinary Res 14(1):197

    Article  CAS  Google Scholar 

  54. Zhong W, Qian K, Xiong J, Ma K, Wang A, Zou Y (2016) Curcumin alleviates lipopolysaccharide induced sepsis and liver failure by suppression of oxidative stress-related inflammation via PI3K/AKT and NF-kappaB related signaling. Biomed Pharmacother 83:302–313

    Article  CAS  PubMed  Google Scholar 

  55. Satta S, Mahmoud AM, Wilkinson FL, Yvonne Alexander M, White SJ (2017) The role of Nrf2 in cardiovascular function and disease. Oxidative medicine and cellular longevity 2017:9237263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Mahmoud AM, Al Dera HS (2015) 18β-Glycyrrhetinic acid exerts protective effects against cyclophosphamide-induced hepatotoxicity: potential role of PPARγ and Nrf2 upregulation. Genes Nutr 10(6):41

  57. Mahmoud AM, Hozayen WG, Ramadan SM (2017) Berberine ameliorates methotrexate-induced liver injury by activating Nrf2/HO-1 pathway and PPARgamma, and suppressing oxidative stress and apoptosis in rats. Biomed Pharmacother 94:280–291

    Article  CAS  PubMed  Google Scholar 

  58. Aladaileh SH, Abukhalil MH, Saghir SAM, Hanieh H, Alfwuaires MA, Almaiman AA, Bin-Jumah M, Mahmoud AM (2019) Galangin activates Nrf2 signaling and attenuates oxidative damage, inflammation, and apoptosis in a rat model of cyclophosphamide-induced hepatotoxicity. Biomolecules 9(8):346

    Article  CAS  PubMed Central  Google Scholar 

  59. Mahmoud AM, Hussein OE, Abd El-Twab SM, Hozayen WG (2019) Ferulic acid protects against methotrexate nephrotoxicity via activation of Nrf2/ARE/HO-1 signaling and PPARgamma, and suppression of NF-kappaB/NLRP3 inflammasome axis. Food Funct 10(8):4593–4607

    Article  CAS  PubMed  Google Scholar 

  60. Xiao Y, Xia J, Wu S, Lv Z, Huang S, Huang H, Su X, Cheng J, Ke Y (2018) Curcumin inhibits acute vascular inflammation through the activation of heme oxygenase-1. Oxidative medicine and cellular longevity 2018:3295807

    PubMed Central  PubMed  Google Scholar 

  61. Yang X, Jiang H, Shi Y (2017) Upregulation of heme oxygenase-1 expression by curcumin conferring protection from hydrogen peroxide-induced apoptosis in H9c2 cardiomyoblasts. Cell Biosci 7(1):20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Hsu HY, Chu LC, Hua KF, Chao LK (2008) Heme oxygenase-1 mediates the anti-inflammatory effect of curcumin within LPS-stimulated human monocytes. J Cell Physiol 215(3):603–612

    Article  CAS  PubMed  Google Scholar 

  63. Xu Z, Wang Z, Li JJ, Chen C, Zhang PC, Dong L, Chen JH, Chen Q, Zhang XT, Wang ZL (2013) Protective effects of selenium on oxidative damage and oxidative stress related gene expression in rat liver under chronic poisoning of arsenic. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 58:1–7

    Article  CAS  Google Scholar 

Download references

Funding

This research project was supported by a grant from the Research Center of the Female Scientific and Medical Colleges, Deanship of Scientific Research, King Saud University, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman M. Mahmoud.

Ethics declarations

The experimental protocol and all animal procedures were approved by the Institutional Animal Ethics Committee of King Saud University (IRB NO. KSU-SE-19-06).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-dossari, M.H., Fadda, L.M., Attia, H.A. et al. Curcumin and Selenium Prevent Lipopolysaccharide/Diclofenac-Induced Liver Injury by Suppressing Inflammation and Oxidative Stress. Biol Trace Elem Res 196, 173–183 (2020). https://doi.org/10.1007/s12011-019-01910-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01910-4

Keywords

Navigation