Skip to main content
Log in

Co-administration of Selenium with Inorganic Mercury Alters the Disposition of Mercuric Ions in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Mercury (Hg) is a common environmental toxicant to which humans are exposed regularly through occupational and dietary means. Although selenium supplementation has been reported to prevent the toxic effects of Hg in animals, the mechanisms for this prevention are not well understood. The purpose of the current study was to determine the effects of selenium on the disposition and toxicity of Hg. Wistar rats were injected intravenously with a non-nephrotoxic dose (0.5 μmol kg−1) or a nephrotoxic dose (2.5 μmol kg−1) of HgCl2 (containing radioactive Hg) with or without co-administration of sodium selenite (Na2SeO3). Twenty-four hours after exposure, rats were euthanized, and organs were harvested. Co-administration of SeO32− with HgCl2 reduced the renal burden of Hg and the urinary excretion of Hg while increasing the amount of Hg in blood and spleen. We propose that Hg reacts with reduced selenite in the blood to form large Hg–Se complexes that are unable to be filtered at the glomerulus. Consequently, these complexes remain in the blood and are able to accumulate in blood-rich organs. These complexes, which may have fewer toxic effects than other species of Hg, may be eliminated slowly over the course of weeks to months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gibb H, O'Leary KG (2014) Mercury exposure and health impacts among individuals in the artisanal and small-scale gold mining community: a comprehensive review. Environ Health Perspect 122:667–672

    CAS  PubMed  PubMed Central  Google Scholar 

  2. EPA (2018) How people are exposed to mercury. US Environmental Protection Agency, Washington, D.C.

    Google Scholar 

  3. Asano S, Eto K, Kurisaki E, Gunji H, Hiraiwa K, Sato M, Sato H, Hasuike M, Hagiwara N, Wakasa H (2000) Review article: acute inorganic mercury vapor inhalation poisoning. Pathol Int 50:169–174

    CAS  PubMed  Google Scholar 

  4. Vazquez M, Calatayud M, Velez D, Devesa V (2013) Intestinal transport of methylmercury and inorganic mercury in various models of Caco-2 and HT29-MTX cells. Toxicology 311:147–153

    CAS  PubMed  Google Scholar 

  5. Vazquez M, Velez D, Devesa V, Puig S (2015) Participation of divalent cation transporter DMT1 in the uptake of inorganic mercury. Toxicology 331:119–124

    CAS  PubMed  Google Scholar 

  6. Spiller HA (2018) Rethinking mercury: the role of selenium in the pathophysiology of mercury toxicity. Clin Toxicol (Phila) 56:313–326

    CAS  Google Scholar 

  7. Yu SY, Mao BL, Xiao P, Yu WP, Wang YL, Huang CZ, Chen WQ, Xuan XZ (1990) Intervention trial with selenium for the prevention of lung cancer among tin miners in Yunnan, China. A pilot study. Biol Trace Elem Res 24:105–108

    CAS  PubMed  Google Scholar 

  8. Ralston NV, Raymond LJ (2010) Dietary selenium's protective effects against methylmercury toxicity. Toxicology 278:112–123

    CAS  PubMed  Google Scholar 

  9. Binte Hossain KF, Rahman MM, Sikder MT, Saito T, Hosokawa T, Kurasaki M (2018) Inhibitory effects of selenium on cadmium-induced cytotoxicity in PC12 cells via regulating oxidative stress and apoptosis. Food Chem Toxicol 114:180–189

    CAS  PubMed  Google Scholar 

  10. Bjorklund G (2015) Selenium as an antidote in the treatment of mercury intoxication. Biometals 28:605–614

    PubMed  Google Scholar 

  11. Bjorklund G, Dadar M, Mutter J, Aaseth J (2017) The toxicology of mercury: current research and emerging trends. Environ Res 159:545–554

    PubMed  Google Scholar 

  12. Khan MA, Wang F (2009) Mercury-selenium compounds and their toxicological significance: toward a molecular understanding of the mercury-selenium antagonism. Environ Toxicol Chem 28:1567–1577

    CAS  PubMed  Google Scholar 

  13. Chen C, Yu H, Zhao J, Li B, Qu L, Liu S, Zhang P, Chai Z (2006) The roles of serum selenium and selenoproteins on mercury toxicity in environmental and occupational exposure. Environ Health Perspect 114:297–301

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zalups RK (2000) Molecular interactions with mercury in the kidney. Pharmacol Rev 52:113–143

    CAS  PubMed  Google Scholar 

  15. Arnold AP, Tan KS, Rabenstein DL (1986) Nuclear magnetic resonance studies of the solution chemistry of metal complexes. 23. Complexation of methylmercury by selenohydryl-containing amino acids and related molecules. Inorg Chem 25:2433–2437

    CAS  Google Scholar 

  16. Chen RW, Whanger PD, Fang SC (1974) Diversion of mercury binding in rat tissues by selenium: a possible mechanism of protection. Pharmacol Res Commun 6:571–579

    CAS  PubMed  Google Scholar 

  17. Li YF, Dong Z, Chen C, Li B, Gao Y, Qu L, Wang T, Fu X, Zhao Y, Chai Z (2012) Organic selenium supplementation increases mercury excretion and decreases oxidative damage in long-term mercury-exposed residents from Wanshan, China. Environ Sci Technol 46:11313–11318

    CAS  PubMed  Google Scholar 

  18. Norseth T, Clarkson TW (1970) Studies on the biotransformation of 203Hg-labeled methyl mercury chloride in rats. Arch Environ Health 21:717–727

    CAS  PubMed  Google Scholar 

  19. Norseth T, Clarkson TW (1970) Biotransformation of methylmercury salts in the rat studied by specific determination of inorganic mercury. Biochem Pharmacol 19:2775–2783

    CAS  PubMed  Google Scholar 

  20. Norseth T, Clarkson TW (1971) Intestinal transport of 203Hg-labeled methyl mercury chloride. Role of biotransformation in rats. Arch Environ Health 22:568–577

    CAS  PubMed  Google Scholar 

  21. Wang X, Wang WX (2017) Selenium induces the demethylation of mercury in marine fish. Environ Pollut 231:1543–1551

    CAS  PubMed  Google Scholar 

  22. Lemke M, Gorl N, Berg A, Weber H, Hennighausen G, Merkord J (2006) Influence of selenium treatment on the acute toxicity of dibutyltin dichloride in rats. Pancreatology 6:486–496

    CAS  PubMed  Google Scholar 

  23. Belanger M, Westin A, Barfuss DW (2001) Some health physics aspects of working with 203Hg in university research. Health Phys 80:S28–S30

    CAS  PubMed  Google Scholar 

  24. Bridges CC, Bauch C, Verrey F, Zalups RK (2004) Mercuric conjugates of cysteine are transported by the amino acid transporter system b(0,+): implications of molecular mimicry. J Am Soc Nephrol 15:663–673

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee HB, Blaufox MD (1985) Blood volume in the rat. J Nucl Med 26:72–76

    CAS  PubMed  Google Scholar 

  26. Li X, Yin D, Yin J, Chen Q, Wang R (2014) Dietary selenium protect against redox-mediated immune suppression induced by methylmercury exposure. Food Chem Toxicol 72:169–177

    CAS  PubMed  Google Scholar 

  27. Naganuma A, Imura N (1983) Mode of in vitro interaction of mercuric mercury with selenite to form high-molecular weight substance in rabbit blood. Chem Biol Interact 43:271–282

    CAS  PubMed  Google Scholar 

  28. Naganuma A, Tabata J, Imura N (1982) A reaction product from mercuric mercury, selenite and reduced glutathione. Res Commun Chem Pathol Pharmacol 38:291–299

    CAS  PubMed  Google Scholar 

  29. Naganuma A, Ishii Y, Imura N (1984) Effect of administration sequence of mercuric chloride and sodium selenite on their fates and toxicities in mice. Ecotoxicol Environ Saf 8:572–580

    CAS  PubMed  Google Scholar 

  30. Watanabe C (2002) Modification of mercury toxicity by selenium: practical importance? Tohoku J Exp Med 196:71–77

    CAS  PubMed  Google Scholar 

  31. Sakamoto M, Itai T, Yasutake A, Iwasaki T, Yasunaga G, Fujise Y, Nakamura M, Murata K, Chan HM, Domingo JL, Marumoto M (2015) Mercury speciation and selenium in toothed-whale muscles. Environ Res 143:55–61

    CAS  PubMed  Google Scholar 

  32. Gajdosechova Z, Lawan MM, Urgast DS, Raab A, Scheckel KG, Lombi E, Kopittke PM, Loeschner K, Larsen EH, Woods G, Brownlow A, Read FL, Feldmann J, Krupp EM (2016) In vivo formation of natural HgSe nanoparticles in the liver and brain of pilot whales. Sci Rep 6:34361

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yoneda S, Suzuki KT (1997) Equimolar Hg-Se complex binds to selenoprotein P. Biochem Biophys Res Commun 231:7–11

    CAS  PubMed  Google Scholar 

  34. Steiniger BS (2015) Human spleen microanatomy: why mice do not suffice. Immunology 145:334–346

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jakubovsky J, Brozman M, Ruzickova M, Surmikova E, Belko I, Liska J, Polak S, Sadlonova I, Belosovic M (1990) Structural basis of the spleen in rats. Bratisl Lek Listy 91:466–478

    CAS  PubMed  Google Scholar 

  36. Vaupel P, Ruppert H, Hutten H (1977) Splenic blood flow and intrasplenic flow distribution in rats. Pflugers Arch 369:193–201

    CAS  PubMed  Google Scholar 

  37. Daemen MJ, Thijssen HH, van Essen H, Vervoort-Peters HT, Prinzen FW, Struyker Boudier HA, Smits JF (1989) Liver blood flow measurement in the rat. The electromagnetic versus the microsphere and the clearance methods. J Pharmacol Methods 21:287–297

    CAS  PubMed  Google Scholar 

  38. Braet F, Wisse E (2002) Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol 1:1

    PubMed  PubMed Central  Google Scholar 

  39. Schroeder B, McNiven MA (2014) Importance of endocytic pathways in liver function and disease. Compr Physiol 4:1403–1417

    PubMed  PubMed Central  Google Scholar 

  40. Forman HJ, Zhang H, Rinna A (2009) Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Asp Med 30:1–12

    CAS  Google Scholar 

  41. Henriques GS, Cozzolino SMS (2001) Determination of metallothionein levels in tissues of young rats fed zinc-enriched diets. Rev Nutr, Campinas 14:163–169

    CAS  Google Scholar 

  42. Piotrowski JK, Trojanowska B, Wisniewska-Knypl JM, Bolanowska W (1974) Mercury binding in the kidney and liver of rats repeatedly exposed to mercuric chloride: induction of metallothionein by mercury and cadmium. Toxicol Appl Pharmacol 27:11–19

    CAS  PubMed  Google Scholar 

Download references

Funding

The current study was funded by a grant from the Navicent Health Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christy C. Bridges.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orr, S.E., George, H.S., Barnes, M.C. et al. Co-administration of Selenium with Inorganic Mercury Alters the Disposition of Mercuric Ions in Rats. Biol Trace Elem Res 195, 187–195 (2020). https://doi.org/10.1007/s12011-019-01835-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01835-y

Navigation