Skip to main content

Advertisement

Log in

Effect of Fluoride on Small Intestine Morphology and Serum Cytokine Contents in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study aimed to determine the effect of excessive fluoride (F) on the morphological characteristics of the small intestine and the contents of serum cytokines in rats. A total of 48 3-week-old healthy female Sprague-Dawley rats were randomly divided into four groups (n = 12). The control group was given deionized distilled water, while the F treatment groups were treated with water containing 25, 50, and 100 mg F/L. After 70 days of treatment, the duodenum, the jejunum, and the ileum were collected to measure the developmental parameters and the distribution of intestinal glycoproteins, goblet cells, and mast cells through Pannoramic Viewer, Periodic Acid-Schiff (PAS) staining, Alcian blue and periodic acid-Schiff (AB-PAS) staining, and toluidine blue staining, respectively. The contents of cytokines, namely, interleukin (IL)-1β, IL-2, IL-6, and tumor necrosis factor (TNF)-α, in serum were detected via enzyme-linked immunosorbent assay (ELISA). Results showed that the villus height, crypt depth, villus height to crypt depth ratio, goblet cells, glycoproteins, and mast cells of the small intestine significantly decreased (P < 0.05 or P < 0.01) in the F treatment group. The contents of IL-1β, IL-2, IL-6, and TNF-α were significantly lower in the F treatment group than in the control group (P < 0.05 or P < 0.01). In summary, excessive F intake impaired intestinal development and immune function by decreasing the developmental parameters and the distribution of immune cells, glycoproteins, and cytokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Amini M, Mueller K, Abbaspour KC, Rosenberg T, Afyuni M, Møller KN, Sarr M, Johnson CA (2008) Statistical modeling of global geogenic fluoride contamination in groundwaters. Environ Sci Technol 42(10):3662–3668

    Article  CAS  PubMed  Google Scholar 

  2. Molina-Frechero N, Gaona E, Angulo M, Sánchez Pérez L, González González R, Nevarez Rascón M, Bologna-Molina R (2015) Fluoride exposure effects and dental fluorosis in children in Mexico City. Med Sci Monit 21:3664–3670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Simon MJ, Beil FT, Rüther W, Busse B, Koehne T, Steiner M, Pogoda P, Ignatius A, Amling M, Oheim R (2014) High fluoride and low calcium levels in drinking water is associated with low bone mass, reduced bone quality and fragility fractures in sheep. Osteoporos Int 25(7):1891–1903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang HW, Zhao WP, Liu J, Tan PP, Zhang C, Zhou BH (2017) Fluoride-induced oxidative stress and apoptosis are involved in the reducing of oocytes development potential in mice. Chemosphere 186:911–918

    Article  CAS  PubMed  Google Scholar 

  5. Zhou BH, Zhao J, Liu J, Zhang JL, Li J, Wang HW (2015) Fluoride-induced oxidative stress is involved in the morphological damage and dysfunction of liver in female mice. Chemosphere 139:504–511

    Article  CAS  PubMed  Google Scholar 

  6. Wang HW, Liu J, Zhao J, Lin L, Zhao WP, Tan PP, Tian WS, Zhou BH (2018) Ca2+ metabolic disorder and abnormal expression of cardiac troponin involved in fluoride-induced cardiomyocyte damage. Chemosphere 201:564–570

    Article  CAS  PubMed  Google Scholar 

  7. Zhao WP, Wang HW, Liu J, Tan PP, Lin L, Zhou BH (2018) JNK/STAT signaling pathway is involved in fluoride-induced follicular developmental dysplasia in female mice. Chemosphere 209:88–95

    Article  CAS  PubMed  Google Scholar 

  8. Cerklewski FL (1997) Fluoride bioavailability-nutritional and clinical aspects. Nutr Res 17(5):907–929

    Article  CAS  Google Scholar 

  9. Dharmaratne RW (2015) Fluoride in drinking water and diet: the causative factor of chronic kidney diseases in the North Central Province of Sri Lanka. Environ Health Prev Med 20(4):237–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gharzouli K, Senator A (1994) Fluoride absorption in vitro by the gastrointestinal tract of the rat. Fluoride 27(4):185–188

    CAS  Google Scholar 

  11. Mowat AM, Agace WW (2014) Regional specialization within the intestinal immune system. Nat Rev Immunol 14(10):667–685

    Article  CAS  PubMed  Google Scholar 

  12. Cerezuela R, Fumanal M, Tapia-Paniagua ST, Meseguer J, Morinigo MA, Esteban MA (2012) Histological alterations and microbial ecology of the intestine in gilthead seabream (Sparus aurata L.) fed dietary probiotics and microalgae. Cell Tissue Res 350(3):477–489

    Article  PubMed  Google Scholar 

  13. Nochi T, Kiyono H (2006) Innate immunity in the mucosal immune system. Curr Pharm Des 12(32):4203–4213

    Article  CAS  PubMed  Google Scholar 

  14. Lambert GP (2009) Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects. J Anim Sci 87(14 Suppl):E101–E108

    Article  CAS  PubMed  Google Scholar 

  15. Schleimer RP, Berdnikovs S (2017) Etiology of epithelial barrier dysfunction in patients with type 2 inflammatory diseases. J Allergy Clin Immunol 139(6):1752–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Luo Q, Cui H, Peng X, Fang J, Zuo Z, Deng J, Liu J, Deng Y (2013) Intestinal IgA+ cell numbers as well as IgA, IgG, and IgM contents correlate with mucosal humoral immunity of broilers during supplementation with high fluorine in the diets. Biol Trace Elem Res 154(1):62–72

    Article  CAS  PubMed  Google Scholar 

  17. Luo Q, Cui H, Peng X, Fang J, Zuo Z, Deng J, Liu J, Deng Y (2013) Suppressive effects of dietary high fluorine on the intestinal development in broilers. Biol Trace Elem Res 156(1–3):153–165

    Article  CAS  PubMed  Google Scholar 

  18. Kamada N, Rogler G (2016) The innate immune system: a trigger for many chronic inflammatory intestinal diseases. Inflamm Intest Dis 1(2):70–77

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chauhan SS, Mahmood A, Ojha S (2013) Ethanol and age enhances fluoride toxicity through oxidative stress and mitochondrial dysfunctions in rat intestine. Mol Cell Biochem 384(1–2):251–262

    Article  CAS  PubMed  Google Scholar 

  20. Chauhan SS, Ojha S, Mahmood A (2011) Modulation of lipid peroxidation and antioxidant defense systems in rat intestine by subchronic fluoride and ethanol administration. Alcohol 45(7):663–672

    Article  CAS  PubMed  Google Scholar 

  21. Caspary WF (1992) Physiology and pathophysiology of intestinal absorption. Am J Clin Nutr 55(1):299S–308S

    Article  CAS  PubMed  Google Scholar 

  22. Song YM, Kim MH, Kim HN, Jang I, Han JH, Fontamillas GA, Lee CY, Park BC (2018) Effects of dietary supplementation of lipid-coated zinc oxide on intestinal mucosal morphology and expression of the genes associated with growth and immune function in weanling pigs. Asian Australas J Anim Sci 31(3):403–409

    Article  CAS  PubMed  Google Scholar 

  23. Long L, Chen J, Zhang Y, Liang X, Ni H, Zhang B, Yin Y (2017) Comparison of porous and nano zinc oxide for replacing high-dose dietary regular zinc oxide in weaning piglets. PLoS One 12(8):e0182550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao WP, Wang HW, Liu J, Tan PP, Luo XL, Zhu SQ, Chen XL, Zhou BH (2018) Positive PCNA and Ki-67 expression in the testis correlates with spermatogenesis dysfunction in fluoride-treated rats. Biol Trace Elem Res. https://doi.org/10.1007/s12011-018-1338-6

  25. Pelaseyed T, Bergström JH, Gustafsson JK, Ermund A, Birchenough GM, Schütte A, van der Post S, Svensson F, Rodríguez-Piñeiro AM, Nyström EE, Wising C, Johansson ME, Hansson GC (2014) The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev 260(1):8–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johansson ME, Sjövall H, Hansson GC (2013) The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol 10(6):352–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dvorak AM, Meleod RS, Onderdonk AB, Monahan-Earley RA, Cullen JB, Antonioli DA, Morgan E, Blair JE, Estrella P, Cisneros RL (1992) Human gut mmucosal mast cells: ultrastructure observations and anatomic variation in mast cell-nerve associations in vivo. Int Arch Allergy Immunol 98:158–168

    Article  CAS  PubMed  Google Scholar 

  28. Ou D, Li D, Cao Y, Li X, Yin J, Qiao S, Wu G (2007) Dietary supplementation with zinc oxide decreases expression of the stem cell factor in the small intestine of weanling pigs. J Nutr Biochem 18(12):820–826

    Article  CAS  PubMed  Google Scholar 

  29. Folkerts J, Stadhouders R, Redegeld FA, Tam SY, Hendriks RW, Galli SJ, Maurer M (2018) Effect of dietary fiber and metabolites on mast cell activation and mast cell-associated diseases. Front Immunol 9:1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luo Q, Cui H, Peng X, Fang J, Zuo Z, Liu J, Wu B, Deng Y (2013) The association between cytokines and intestinal mucosal immunity among broilers fed on diets supplemented with fluorine. Biol Trace Elem Res 152(2):212–218

    Article  CAS  PubMed  Google Scholar 

  31. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Iijima H, Takahashi I, Kiyono H (2001) Mucosal immune network in the gut for the control of infectious diseases. Rev Med Virol 11(2):117–133

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is sponsored by the National Natural Science Foundation of China (grant no. 31201963).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-wei Wang or Bian-hua Zhou.

Ethics declarations

The study design was approved by the Institutional Animal Care and Use Committee of China (Beijing, China).

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Hw., Liu, J., Zhao, Wp. et al. Effect of Fluoride on Small Intestine Morphology and Serum Cytokine Contents in Rats. Biol Trace Elem Res 189, 511–518 (2019). https://doi.org/10.1007/s12011-018-1503-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1503-y

Keywords

Navigation