Skip to main content

Advertisement

Log in

The Study on the Correlation Between Six Kinds of Mineral Elements and Diabetes

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The study aimed to explore the relationship of six kinds of mineral elements and diabetes among adults in northeast China. A cross-sectional survey was conducted in Jilin Province, northeast China. A total of 366 males and 204 females aged 18 ~ 77 years from Jingyu town, Dongliao town, and Changling town were included using a multistage stratified random cluster sampling design. Data was obtained from face to face interview, physical examination, and laboratory measurement. We defined the normal people (3.9 ~ 6.0 mmol/L), impaired fasting glucose (IFG) individuals (6.1 ~ 6.9 mmol/L), and diabetes mellitus (DM) (> 7.0 mmol/L) according to the WHO diagnostic criteria. Kruskal-Wallis test, Spearman rank correlation, as well as binary logistic regression were used to analyze influencing factors. lg(Cu/Zn)was correlated with DM (OR 8.390; 95% CI of OR 1.272–55.347). The specific mineral elements such as Zn, Ca, as well as Cu/Zn ratio may be the potential risk factors for diabetes. So, the supplement or reduction of these elements is supposed to be told to IFG to prevent or delay the occurrence of diabetes or DM to avoid its complication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Diabetes Altas, Seventh Edition Committee (2015) IDF DIABETES ATLAS - 7th edition. International Diabetes Federation. www.diabetesatlas.org. Accessed date Sept 2, 2017

  2. Zhao M, Zheng SS, Wang ZP et al (2016) Glycemic control and related factors among diabetic patients in communities of Ningbo city. Chin Prev Med 17:187–192

    CAS  Google Scholar 

  3. Centers for Disease Control and Prevention (2011) National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States. Department of Health and Human Services, Centers for Disease Control and Prevention, Atlanta

    Google Scholar 

  4. da Rocha FJ, Ogurtsova K, Linnenkamp U, Guariguata L, Seuring T, Zhang P, Cavan D, Makaroff LE (2016) IDF Diabetes Atlas estimates of 2014 global health expenditures on diabetes. Diabetes Res Clin Pract 117:48–54

    Google Scholar 

  5. Wang W, McGreevey WP, Fu C, Zhan S, Luan R, Che W, Xu B (2009) Type 2 diabetes mellitus in China: a preventable economic burden. Am J Manag Care 15:593–601

    PubMed  Google Scholar 

  6. Meiloud G, Arfa I, Kefi R et al (2013) Type 2 diabetes in Mauritania: prevalence of the undiagnosed diabetes, influence of family history and maternal effect. Prim Care Diabetes 7:19–24

    PubMed  Google Scholar 

  7. Creatore MI, Glazier RH, Moineddin R, Fazli GS, Johns A, Gozdyra P et al (2016) Association of neighborhood walkability with change in overweight, obesity, and diabetes. JAMA 315:2211–2220

    CAS  PubMed  Google Scholar 

  8. Dzhambov AM, Dimitrova DD (2016) Exposures to road traffic, noise, and air pollution as risk factors for type 2 diabetes: a feasibility study in Bulgaria [J]. Noise Health 18:133

    PubMed  PubMed Central  Google Scholar 

  9. Samardžić M, Martinović M, Nedović-Vuković M, Popović-Samardžić M (2016) Recent incidence of type 1 diabetes mellitus in montenegro: a shift toward younger age at disease onset. Acta Clin Croat 55:63–68

    PubMed  Google Scholar 

  10. Waernbaum I, Dahlquist G (2016) Low mean temperature rather than few sunshine hours are associated with an increased incidence of type 1 diabetes in children. Eur J Epidemiol 31:61–65

    PubMed  Google Scholar 

  11. Kahr MK, Suter MA, Ballas J, Ramin SM, Monga M, Lee W et al (2016) Geospatial analysis of food environment demonstrates associations with gestational diabetes. Am J Obstet Gynecol 214:110.e1–110. e9

    Google Scholar 

  12. Aghili R, Polonsky WH, Valojerdi AE, Malek M, Keshtkar AA, Esteghamati A, Heyman M, Khamseh ME (2016) Type 2 diabetes: model of factors associated with glycemic control. Can J Diabetes 40:424–430

    PubMed  Google Scholar 

  13. Neumann A, Schoffer O, Norström F, Norberg M, Klug SJ, Lindholm L (2014) Health-related quality of life for pre-diabetic states and type 2 diabetes mellitus: a cross-sectional study in Västerbotten, Sweden. Health Qual Life Outcomes. https://doi.org/10.1186/s12955-014-0150-z

  14. Yearbook C S (2015) National Bureau of Statistics of China. China Statistical Yearbook. http://www.stats.gov.cn/english/. Accessed 27 June 2015

  15. Yin Y, Han W, Wang Y, Zhang Y, Wu S, Zhang H, Jiang L, Wang R, Zhang P, Li B (2015) Identification of risk factors affecting impaired fasting glucose and diabetes in adult patients from northeast China. Int J Environ Res Public Health 12:12662–12678

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Meshram II, Rao MVV, Rao VS, Laxmaiah A, Polasa K (2016) Regional variation in the prevalence of overweight/obesity, hypertension and diabetes and their correlates among the adult rural population in India. Br J Nutr 115:1265–1272

    CAS  PubMed  Google Scholar 

  17. De Kalbermatten B, Philippe J (2016) Prevention and remission of diabetes: is it feasible? Rev Méd Suisse 12:1078–1080

    PubMed  Google Scholar 

  18. Kawada T (2016) Smoking cessation and the incidence of impaired fasting glucose and type 2 diabetes mellitus. J Diabetes Complicat 30:561

    PubMed  Google Scholar 

  19. Basu S, McKee M, Galea G, Stuckler D (2013) Relationship of soft drink consumption to global overweight, obesity, and diabetes: a cross-national analysis of 75 countries. Am J Public Health 103:2071–2077

    PubMed  PubMed Central  Google Scholar 

  20. Huth C, Beuerle S, Zierer A, Heier M, Herder C, Kaiser T et al (2015) Biomarkers of iron metabolism are independently associated with impaired glucose metabolism and type 2 diabetes: the KORA F4 study. Eur J Endocrinol 173:643–653

    CAS  PubMed  Google Scholar 

  21. Zafar U, Qureshi HJ, Imran M (2015) Comparison of iron status and insulin resistance between non-diabetic offspring of type 2 diabetics and non-diabetic offspring of non-diabetics. J Ayub Med Coll Abbottabad 27:307–311

    PubMed  Google Scholar 

  22. Ponikowska B, Suchocki T, Paleczny B, Olesinska M, Powierza S, Borodulin-Nadzieja L et al (2013) Iron status and survival in diabetic patients with coronary artery disease. Diabetes Care 36:4147–4156

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bao W, Rong Y, Rong S, Liu L (2012) Dietary iron intake, body iron stores, and the risk of type 2 diabetes: a systematic review and meta-analysis. BMC Med 10:1

    Google Scholar 

  24. Zaccardi F, Webb DR, Carter P, Pitocco D, Khunti K, Davies MJ et al (2015) Association between direct measurement of active serum calcium and risk of type 2 diabetes mellitus: a prospective study. Nutr Metab Cardiovasc Dis 25:562–568

    CAS  PubMed  Google Scholar 

  25. Lorenzo C, Hanley AJ, Rewers MJ, Haffner SM (2014) Calcium and phosphate concentrations and future development of type 2 diabetes: the Insulin Resistance Atherosclerosis Study. Diabetologia 57:1366–1374

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Becerra-Tomás N, Estruch R, Bulló M, Casas R, Díaz-López A, Basora J et al (2014) Increased serum calcium levels and risk of type 2 diabetes in individuals at high cardiovascular risk. Diabetes Care 37:3084–3091

    PubMed  Google Scholar 

  27. Zargar AH, Bashir MI, Masoodi SR, Laway BA, Wani AI, Khan AR et al (2002) Copper, zinc and magnesium levels in type-1 diabetes mellitus. Saudi Med J 23:539–542

    PubMed  Google Scholar 

  28. Valera P, Zavattari P, Sanna A, Pretti S, Marcello A, Mannu C et al (2015) Zinc and other metals deficiencies and risk of type 1 diabetes: an ecological study in the high risk Sardinia Island. PLoS One 10:e0141262

    PubMed  PubMed Central  Google Scholar 

  29. Afridi HI, Kazi TG, Brabazon D, Naher S, Talpur FN (2013) Comparative metal distribution in scalp hair of Pakistani and Irish referents and diabetes mellitus patients. Clin Chim Acta 415:207–214

    CAS  PubMed  Google Scholar 

  30. Yoshikawa Y, Sakurai H, Yasui H (2011) Challenge of studies on the development of new Zn complexes to treat diabetes mellitus Yakugaku Zasshi. Metallomics 3:686–692

    CAS  PubMed  Google Scholar 

  31. Anetor JI, Senjobi A, Agbedana EO, Ajose OA (2002) Decreased serum magnesium and zinc levels: atherogenic implications in type-2 diabetes mellitus in Nigerians. Nutr Health 16:291–300

    CAS  PubMed  Google Scholar 

  32. Partida-Hernandez G, Arreola F, Fenton B, Cabeza M, Roman-Ramos R, Revilla-Monsalve MC (2006) Effect of zinc replacement on lipids and lipoproteins in type 2-diabetic patients. Biomed Pharmacother 60:161–168

    CAS  PubMed  Google Scholar 

  33. Xu J, Zhou Q, Liu G, Tan Y, Cai L (2013) Analysis of serum and urinal copper and zinc in Chinese northeast population with the prediabetes or diabetes with and without complications. Oxidative Med Cell Longev 2013 :11. https://doi.org/10.1155/2013/635214

    Google Scholar 

  34. Naka T, Kaneto H, Katakami N, Matsuoka TA, Harada A, Yamasaki Y et al (2013) Association of serum copper levels and glycemic control in patients with type 2 diabetes. Endocr J 60:393–396

    CAS  PubMed  Google Scholar 

  35. Roughead ZKF, Lukaski HC (2003) Inadequate copper intake reduces serum insulin-like growth factor-I and bone strength in growing rats fed graded amounts of copper and zinc. J Nutr 133:442–448

    CAS  PubMed  Google Scholar 

  36. Bremner I, Beattie JH (1995) Copper and zinc metabolism in health and disease: speciation and interactions. Proc Nutr Soc 54:489–499

    CAS  PubMed  Google Scholar 

  37. Van Biervliet S, Küry S, De Bruyne R, Vanakker OM, Schmitt S, Velde SV et al (2015) Clinical zinc deficiency as early presentation of Wilson disease. J Pediatr Gastroenterol Nutr 60:457–459

    PubMed  Google Scholar 

  38. Iorio R, Ranucci G (2015) Wilson disease: a matter of copper, but also of zinc. J Pediatr Gastroenterol Nutr 60:423–424

    PubMed  Google Scholar 

  39. Kandanapitiye MS, Wang FJ, Valley B et al (2015) Selective ion exchange governed by the Irving–Williams series in K2Zn3 [Fe(CN)6]2 nanoparticles: toward a designer prodrug for Wilson’s disease [J]. Inorg Chem 54:1212–1214

    CAS  PubMed  Google Scholar 

  40. Del Gobbo LC, Song Y, Poirier P, Dewailly E, Elin RJ, Egeland GM (2012) Low serum magnesium concentrations are associated with a high prevalence of premature ventricular complexes in obese adults with type 2 diabetes. Cardiovasc Diabetol 11:23

    PubMed  PubMed Central  Google Scholar 

  41. Barbagallo M, Di Bella G, Brucato V, D’Angelo D, Damiani P, Monteverde A et al (2014) Serum ionized magnesium in diabetic older persons. Metabolism 63:502–509

    CAS  PubMed  Google Scholar 

  42. Sinangil A, Celik V, Barlas S, Sakaci T, Koc Y, Basturk T et al (2016) New-onset diabetes after kidney transplantation and pretransplant hypomagnesemia. Prog Transplant 26:55–61

    PubMed  Google Scholar 

  43. Tian XU, CHEN GC, Lin ZHAI, Ke KF (2015) Nonlinear reduction in risk for type 2 diabetes by magnesium intake: an updated meta-analysis of prospective cohort studies. Biomed Environ Sci 28:527–534

    Google Scholar 

  44. Ramadass S, Basu S, Srinivasan AR (2015) SERUM magnesium levels as an indicator of status of diabetes mellitus type 2. Diabetes Metab Syndr Clin Res Rev 9:42–45

    CAS  Google Scholar 

  45. Shardha AK, Vaswani AS, Faraz A, Alam MT, Kumar P (2014) Frequency and risk factors associated with hypomagnesaemia in hypokalemic type-2 diabetic patients [J]. J Coll Physicians Surg Pak 24:830–835

    PubMed  Google Scholar 

  46. Guerrero-Romero F, Rodríguez-Morán M (2013) Oral magnesium supplementation: an adjuvant alternative to facing the worldwide challenge of type 2 diabetes? Cir Cir 82:282–289

    Google Scholar 

Download references

Acknowledgements

We thank all participants involved in this study.

Funding Information

This work was supported by the Scientific Research Foundation of the Health Bureau of Jilin Province, China (grant number: 2011Z116).

Author information

Authors and Affiliations

Authors

Contributions

ZL, BL, and CW conceived and designed the experiments; ZL, CW, LL, LW, and MS performed the experiments; ZL, CW, CG, XL, and HN analyzed the data and drafted the manuscript; ZL, CW, and BL participated in revising the manuscript together. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Bo Li.

Ethics declarations

Conflicts of Interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wang, C., Li, L. et al. The Study on the Correlation Between Six Kinds of Mineral Elements and Diabetes. Biol Trace Elem Res 183, 226–232 (2018). https://doi.org/10.1007/s12011-017-1136-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1136-6

Keywords

Navigation