Skip to main content
Log in

Rutin–Nickel Complex: Synthesis, Characterization, Antioxidant, DNA Binding, and DNA Cleavage Activities

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The rutin–nickel (II) complex (RN) was synthesized and characterized by elemental analysis, UV–visible spectroscopy, IR, mass spectrometry, 1H NMR, TG-DSC, SEM, and molar conductivity. The low molar conductivity value investigates the non-electrolyte nature of the complex. The elemental analysis and other physical and spectroscopic methods reveal the 1:2 stoichiometric ratio (metal/ligand) of the complex. An antioxidant study of rutin and its metal complex against DPPH radical showed that the complex has more radical scavenging activity than free rutin. The interaction of complex RN with DNA was determined using fluorescence spectra and agarose gel electrophoresis. The results showed that RN can intercalate moderately with DNA, quench a strong intercalator ethidium bromide (EB), and compete for the intercalative binding sites. The complex showed significant cleavage of pBR 322 DNA from supercoiled form (SC) to nicked circular form (NC), and these cleavage effects were dose-dependent. Moreover, the mechanism of DNA cleavage indicated that it was a hydrolytic cleavage pathway. These results revealed the potential nuclease activity of the complex to cleave DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99(1):191–203

    Article  CAS  Google Scholar 

  2. Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55(6):481–504

    Article  CAS  PubMed  Google Scholar 

  3. Dehghan G, Shafiee A, Ghahremani MH, Ardestani SK, Abdollahi M (2007) Antioxidant potential of various extracts from Ferula szovitsiana. In relation to their phenolic content. Pharm Biol 45(9):691–699

    Article  CAS  Google Scholar 

  4. Bukhari SB, Memon S, Mahroof-Tahir M, Bhanger M (2009) Synthesis, characterization and antioxidant activity copper–quercetin complex. Spectrochim Acta A Mol Biomol Spectrosc 71(5):1901–1906

    Article  PubMed  Google Scholar 

  5. Kamalakkannan N, Prince PSM (2006) Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic Wistar rats. Basic Clin Pharmacol Toxicol 98(1):97–103

    Article  CAS  PubMed  Google Scholar 

  6. Deschner EE, Ruperto J, Wong G, Newmark HL (1991) Quercetin and rutin as inhibitors of azoxymethanol-induced colonic neoplasia. Carcinogenesis 12(7):1193–1196

    Article  CAS  PubMed  Google Scholar 

  7. LIN J, LUO L, CHEN L, YU J (2012) Synthesis, characterization and antibacterial activity of rare earth lanthanum-rutin complex [J]. J Text Res 5:017

    Google Scholar 

  8. Aleksandrov P, Speranskaia T, Bobkov I, Zagorevskiĭ V, Zykov D (1985) Effect of rutin and esculamine on models of aseptic inflammation. Farmakologiia i toksikologiia 49(1):84–86

    Google Scholar 

  9. Carlo G, Izzo A, Maiolino P, Mascolo N, Viola P, Diurno M, Capasso F (1993) Inhibition of intestinal motility and secretion by flavonoids in mice and rats: structure-activity relationships. J Pharm Pharmacol 45(12):1054–1059

    Article  PubMed  Google Scholar 

  10. Pozin V, Skuratovskaia S, Pocheptsova G (1995) Changes in the vascular wall and ischemic damages to the myocardium in reversible episodes of heart muscle ischemia. Fiziolohichnyi zhurnal (Kiev, Ukraine: 1994) 42(1–2):10–16

    Google Scholar 

  11. Santos B, Silva A, Pitanga B, Sousa C, Grangeiro M, Fragomeni B, Coelho P, Oliveira M, Menezes-Filho N, Costa M (2011) Antiproliferative, proapoptotic and morphogenic effects of the flavonoid rutin on human glioblastoma cells. Food Chem 127(2):404–411

    Article  CAS  PubMed  Google Scholar 

  12. Gryglewski RJ, Korbut R, Robak J, Świȩs J (1987) On the mechanism of antithrombotic action of flavonoids. Biochem Pharmacol 36(3):317–322

    Article  CAS  PubMed  Google Scholar 

  13. Lapidot T, Walker MD, Kanner J (2002) Antioxidant and prooxidant effects of phenolics on pancreatic β-cells in vitro. J Agric Food Chem 50(25):7220–7225

    Article  CAS  PubMed  Google Scholar 

  14. Afanas’ ev IB, Dcrozhko AI, Brodskii AV, Kostyuk VA, Potapovitch AI (1989) Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem Pharmacol 38(11):1763–1769

    Article  Google Scholar 

  15. Selvaraj S, Krishnaswamy S, Devashya V, Sethuraman S, Krishnan UM (2012) Synthesis, characterization and DNA binding properties of rutin–iron complex. RSC Adv 2(7):2797–2802

    Article  CAS  Google Scholar 

  16. Tan J, Wang B, Zhu L (2009) DNA binding, cytotoxicity, apoptotic inducing activity, and molecular modeling study of quercetin zinc (II) complex. Bioorg Med Chem 17(2):614–620

    Article  CAS  PubMed  Google Scholar 

  17. Tan J, Zhu L, Wang B (2009) DNA binding and cleavage activity of quercetin nickel (II) complex. Dalton Trans 24:4722–4728

    Article  Google Scholar 

  18. Pękal A, Biesaga M, Pyrzynska K (2011) Interaction of quercetin with copper ions: complexation, oxidation and reactivity towards radicals. Biometals 24(1):41–49

    Article  PubMed  Google Scholar 

  19. Jun T, Bochu W, Liancai Z (2007) Hydrolytic cleavage of DNA by quercetin zinc (II) complex. Bioorg Med Chem Lett 17(5):1197–1199

    Article  PubMed  Google Scholar 

  20. Wang Q, Huang Y, Zhang J-S, Yang X-B (2014) Synthesis, characterization, DNA interaction, and antitumor activities of La (III) complex with Schiff base ligand derived from kaempferol and diethylenetriamine. Bioinorg Chem Appl 2014

  21. Raza A, Xu X, Xia L, Xia C, Tang J, Ouyang Z (2016) Quercetin-iron complex: synthesis, characterization, antioxidant, DNA binding, DNA cleavage, and antibacterial activity studies. J Fluoresc 1–9

  22. Escandar GM, Sala LF (1991) Complexing behavior of rutin and quercetin. Can J Chem 69(12):1994–2001

    Article  CAS  Google Scholar 

  23. Kuntić V, Malesěev D, Radović Z, Vukojević V (2000) Spectrophotometric investigation of the complexing reaction between rutin and titanyloxalate anion in 50% ethanol. Monatshefte für Chemie/Chemical Monthly 131(7):769–777

    Article  Google Scholar 

  24. Panhwar QK, Memon S (2014) Synthesis, characterization and antioxidant activity of rutin complexes. Pak J Anal Environ Chem 15(2):61

    Google Scholar 

  25. Job P (1928) Job’s method of continuous variation. Ann Chim 9:113–203

    CAS  Google Scholar 

  26. Brand-Williams W, Cuvelier M-E, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28(1):25–30

    Article  CAS  Google Scholar 

  27. Zhou J, Wang L-f, Wang J-y, Tang N (2001) Synthesis, characterization, antioxidative and antitumor activities of solid quercetin rare earth (III) complexes. J Inorg Biochem 83(1):41–48

    Article  CAS  PubMed  Google Scholar 

  28. Nordén B, Tjerneld F (1982) Structure of methylene blue–DNA complexes studied by linear and circular dichroism spectroscopy. Biopolymers 21(9):1713–1734

    Article  PubMed  Google Scholar 

  29. Dehghan G, Khoshkam Z (2012) Tin (II)–quercetin complex: synthesis, spectral characterisation and antioxidant activity. Food Chem 131(2):422–426

    Article  CAS  Google Scholar 

  30. Roy S, Majumdar S, Singh AK, Ghosh B, Ghosh N, Manna S, Chakraborty T, Mallick S (2015) Synthesis, characterization, antioxidant status, and toxicity study of vanadium–rutin complex in Balb/c mice. Biol Trace Elem Res 166(2):183–200

    Article  CAS  PubMed  Google Scholar 

  31. Panhwar QK, Memon S (2013) Synthesis, characterization and antioxidant study of tin (II)–rutin complex: exploration of tin packaging hazards. Inorg Chim Acta 407:252–260

    Article  CAS  Google Scholar 

  32. Qi Y, Jiang M, Cui Y-L, Zhao L, Liu S (2015) Novel reduction of Cr (VI) from wastewater using a naturally derived microcapsule loaded with rutin–Cr (III) complex. J Hazard Mater 285:336–345

    Article  CAS  PubMed  Google Scholar 

  33. Badea M, Olar R, Marinescu D, Uivarosi V, Aldea V, Nicolescu TO (2010) Thermal stability of new vanadyl complexes with flavonoid derivatives as potential insulin-mimetic agents. J Therm Anal Calorim 99(3):823–827

    Article  CAS  Google Scholar 

  34. Kuwabara M, Yoon C, Goyne T, Thederahn T, Sigman DS (1986) Nuclease activity of 1, 10-phenanthroline-copper ion: reaction with CGCGAATTCGCG and its complexes with netropsin and EcoRI. Biochemistry 25(23):7401–7408

    Article  CAS  PubMed  Google Scholar 

  35. Neves A, Terenzi H, Horner R, Horn A Jr, Szpoganicz B, Sugai J (2001) Hydrolytic DNA cleavage promoted by a dinuclear iron (III) complex. Inorg Chem Commun 4(8):388–391

    Article  CAS  Google Scholar 

  36. Thederahn T, Spassky A, Kuwabara MD, Sigman DS (1990) Chemical nuclease activity of 5-phenyl-1, 10-phenanthroline-copper ion detects intermediates in transcription initiation by E. coli RNA polymerase. Biochem Biophys Res Commun 168(2):756–762

    Article  CAS  PubMed  Google Scholar 

  37. Eftink MR, Ghiron CA (1981) Fluorescence quenching studies with proteins. Anal Biochem 114(2):199–227

    Article  CAS  PubMed  Google Scholar 

  38. Zhao X-F, Ouyang Y, Liu Y-Z, Su Q-J, Tian H, Xie C-Z, Xu J-Y (2014) Two polypyridyl copper (II) complexes: synthesis, crystal structure and interaction with DNA and serum protein in vitro. New J Chem 38(3):955–965

    Article  CAS  Google Scholar 

  39. Alagesan M, Bhuvanesh NS, Dharmaraj N (2013) Potentially cytotoxic new copper (II) hydrazone complexes: synthesis, crystal structure and biological properties. Dalton Trans 42(19):7210–7223

    Article  CAS  PubMed  Google Scholar 

  40. Cory M, McKee DD, Kagan J, Henry D, Miller JA (1985) Design, synthesis, and DNA binding properties of bifunctional intercalators. Comparison of polymethylene and diphenyl ether chains connecting phenanthridine. J Am Chem Soc 107(8):2528–2536

    Article  CAS  Google Scholar 

  41. Jun T, Bochu W, Liancai Z (2007) Hydrolytic cleavage of DNA by quercetin manganese (II) complexes. Colloids Surf B: Biointerfaces 55(2):149–152

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (81373480, 81573529, 21372056), Jiangsu University Innovation Fund (15A433), Chinese Government Scholarship (CSC No. 2014DFH792), Sci. & Tech. Project from Traditional Chinese Medicine Bureau of Jiangsu Province (YB2015186), and Zhenjiang Social Development Project (SH2014062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Tang.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, A., Bano, S., Xu, X. et al. Rutin–Nickel Complex: Synthesis, Characterization, Antioxidant, DNA Binding, and DNA Cleavage Activities. Biol Trace Elem Res 178, 160–169 (2017). https://doi.org/10.1007/s12011-016-0909-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0909-7

Keywords

Navigation