Skip to main content

Advertisement

Log in

Middle Iron-Enriched Fructose Diet on Gestational Diabetes Risk and on Oxidative Stress in Offspring Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Gestational diabetes mellitus (GDM) is associated with increased insulin resistance and a heightened level of oxidative stress (OS). Additionally, high iron consumption could also increase insulin resistance and OS, which could aggravate GDM risk. The aim of this study is to evaluate a high fructose diet (F) as an alternative experimental model of GDM on rats. We also have evaluated the worst effect of a fructose iron-enriched diet (FI) on glucose tolerance and OS status during pregnancy. Anthropometric parameters, plasma glucose levels, insulin, and lipid profile were assessed after delivery in rats fed an F diet. The effects observed in mothers (hyperglycemia, and hyperlipidemia) and on pups (macrosomia and hypoglycemia) are similar to those observed in women with GDM. Therefore, the fructose diet could be proposed as an experimental model of GDM. In this way, we can compare the effect of an iron-enriched diet on the metabolic and redox status of mother rats and their pups. The mothers’ glycemic was similar in the F and FI groups, whereas the glycemic was significantly different in the newborn. In rat pups born to mothers fed on an FI diet, the activities of the antioxidant enzyme glutathione peroxidase (GPx) and glutathione-S-transferase in livers and GPx in brains were altered and the gender analysis showed significant differences. Thus, alterations in the glycemic and redox status in newborns suggest that fetuses are more sensitive than their mothers to the effect of an iron-enriched diet in the case of GDM pregnancy. This study proposed a novel experimental model for GDM and provided insights on the effect of a moderate iron intake in adding to the risk of glucose disorder and oxidative damage on newborns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. ADA, American Diabetes Association (2003) Position statement. Gestational diabetes mellitus. Diabetes Care 26(Suppl 1):S103–S105

    Google Scholar 

  2. Marcinkevagea JA, Narayan KM (2011) Gestational diabetes mellitus: taking it to heart. Prim Care Diabetes 5:81–88

    Article  Google Scholar 

  3. Leiva A, Pardo F, Ramírez MA, Farías M, Casanello P, Sobrevia L (2011) Fetoplacental vascular endothelial dysfunction as an early phenomenon in the programming of human adult diseases in subjects born from gestational diabetes mellitus or obesity in pregnancy. Exp Diabetes Res. doi:10.1155/2011/349286

    PubMed  PubMed Central  Google Scholar 

  4. Harlev A, Wiznitzer A (2010) New insights on glucose pathophysiology in gestational diabetes and insulin resistance. Curr Diab Rep 10:242–247

    Article  CAS  PubMed  Google Scholar 

  5. ADA American Diabetes Association (2007) Diagnosis and classification of diabetes mellitus. Diabetes Care 30(Suppl 1):42–47

    Article  Google Scholar 

  6. Lappas M, Hiden U, Desoye G, Froehlich J, Hauguel-de Mouzon S, Jawerbaum A (2011) The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxid Redox Signal 15:3061–3100

    Article  CAS  PubMed  Google Scholar 

  7. Zein S, Rachidi S, Hininger-Favier I (2014) Is oxidative stress induced by iron status associated with gestational diabetes mellitus? J Trace Elem Med Biol 28:65–69

    Article  CAS  PubMed  Google Scholar 

  8. Gelaleti RB, Damasceno DC, Lima OPH, Salvadori FDM, Calderon IP, Peraçoli JC, Rudge MVC (2015) Oxidative DNA damage in diabetic and mild gestational hyperglycemic pregnant women. Diabetol Metab Syndr. doi:10.1186/1758-5996-7-1

    Google Scholar 

  9. Shang M, Zhao J, Yang L, Lin L (2015) Oxidative stress and antioxidant status in women with gestational diabetes mellitus diagnosed by IADPSG criteria. Diabetes Res Clin Pract 109(2):404–410

    Article  CAS  PubMed  Google Scholar 

  10. Robertson RP (2004) Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem 279:42351–42354

    Article  CAS  PubMed  Google Scholar 

  11. Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440(7086):944–948

    Article  CAS  PubMed  Google Scholar 

  12. Damasceno DC, Netto AO, Iessi IL, Gallego FQ, Corvino SB, Dallaqua B, Sinzato YK, Bueno A, Calderon IMP, Rudge MVC (2014) Streptozotocin-induced diabetes models: pathophysiological mechanisms and fetal outcomes. Biomed Res Int. doi:10.1155/2014/819065

    Google Scholar 

  13. Caluwaerts S, Holemans K, Van Bree R, Verhaeghe J, Van Assche FA (2003) Is low-dose streptozotocin in rats an adequate model for gestational diabetes mellitus? J Soc Gynecol Investig 10:216–221

    Article  CAS  PubMed  Google Scholar 

  14. Kiss A, Lima P, Sinzato Y, Takaku M, Takeno M, Rudge M, Damasceno D (2009) Animal models for clinical and gestational diabetes: maternal and fetal outcomes. Diabetol Metab Syndr. doi:10.1186/1758-5996-1-21

    PubMed  PubMed Central  Google Scholar 

  15. Tian ZH, Miao FT, Zhang X, Wang QH, Lei N, Guo LC (2015) Therapeutic effect of okra extract on gestational diabetes mellitus rats induced by streptozotocin. Asian Pac J Trop Med 8(12):1038–1042

    Article  CAS  PubMed  Google Scholar 

  16. Busserolles J, Gueux E, Rock E, Demigne C, Mazur A, Rayssiguier Y (2003) Oligofructoseprotects against the hypertriglyceridemic and pro-oxidative effects of a high fructose diet in rats. J Nutr 133:1903–1908

    CAS  PubMed  Google Scholar 

  17. Kolderup A, Svihus B (2015) Fructose metabolism and relation to atherosclerosis, type 2 diabetes, and obesity. J Nutr Metab. doi:10.1155/2015/823081

    PubMed  PubMed Central  Google Scholar 

  18. Hansen JB, Moen IW, Mandrup-Poulsen T (2014) Iron: the hard player in diabetes pathophysiology. Acta Physiol 210:717–732

    Article  CAS  Google Scholar 

  19. Bao W, Rong Y, Rong S, Liu L (2012) Dietary iron intake, body iron stores, and the risk of type 2 diabetes: a systematic review and meta-analysis. BMC Med. doi:10.1186/1741-7015-10-119

    PubMed  PubMed Central  Google Scholar 

  20. Bo S, Menato G, Villois P, Gambino R, Cassader M, Cotrino I, Cavallo-Perin P (2009) Iron supplementation and gestational diabetes in midpregnancy. Am J Obstet Gynecol 201(2):158 e1-6

    Article  PubMed  Google Scholar 

  21. Bowers K, Yeung E, Williams MA, Qi L, Tobias DK, Hu FB, Zhang CL (2011) A prospective study of prepregnancy dietary iron intake and risk for gestational diabetes mellitus. Diabetes Care 34:1557–1563

    Article  PubMed  PubMed Central  Google Scholar 

  22. Qiu CF, Zhang CL, Gelaye B, Enquobahrie DA, Frederick IO, Williams MA (2011) Gestational diabetes mellitus in relation to maternal dietary heme iron and nonheme iron intake. Diabetes Care 34:1564–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fernandez-Real JM, Lopez-Bermejo A, Ricart W (2002) Cross-talk between iron metabolism and diabetes. Diabetes 51:2348–2354

    Article  CAS  PubMed  Google Scholar 

  24. Swaminathan S, Fonseca VA, Alam MG, Shah SV (2007) The role of iron in diabetes and its complications. Diabetes Care 30:1926–1933

    Article  CAS  PubMed  Google Scholar 

  25. Khambalia AZ, Collins CE, Roberts CL, Morris JM, Powell KL, Tasevski V, Nassar N (2016) Iron deficiency in early pregnancy using serum ferritin and soluble transferrin receptor concentrations are associated with pregnancy and birth outcomes. Eur J Clin Nutr 70(3):358–363

    Article  CAS  PubMed  Google Scholar 

  26. Goldstein BJ, Mahadev K, Wu X, Zhu L, Motoshima H (2005) Role of insulin-induced reactive oxygen species in the insulin signaling pathway. Antioxid Redox Signal 7(7–8):1021–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Casanueva E, Viteri FE (2003) Iron and oxidative stress in pregnancy. J Nutr 133:1700S–1708S

    CAS  PubMed  Google Scholar 

  28. Richard MJ, Portal B, Meo J, Coudray C, Hadjian A, Favier A (1992) Malondialdehyde kit evaluated for determining plasma and lipoprotein fractions that react with thiobarbituric acid. Clin Chem 38:704–709

    CAS  PubMed  Google Scholar 

  29. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  PubMed  Google Scholar 

  30. Faure P, Lafond JL (1995) Measurement of plasma sulfhydryl and carbonyl groups as a possible indicator of protein oxydation. In: Favier AE, Cadet J, Kalnyanaraman M, Fontecave M, Pierre JL (eds) Analysis of free radicals in biological systems. Birkäuser, Berlin, pp. 237–248

    Chapter  Google Scholar 

  31. Akerboom TP, Sies H (1981) Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol 77:373–382

    Article  CAS  PubMed  Google Scholar 

  32. Gunzler WA, Kremers H, Flohe L (1974) An improved coupled test procedure for glutathione peroxidase (EC 1.11.1.9.) in blood. Z Klin Chem Klin Biochem 12:444–448

    CAS  PubMed  Google Scholar 

  33. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  34. Goyal SN, Reddy NM, Patil KR, Nakhate KT, Ojha S, Patil CR, Agrawal YO (2016) Challenges and issues with streptozotocin-induced diabetes—a clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem Biol Interact 25:244 49-63

    Google Scholar 

  35. Hininger-Favier I, Benaraba R, Coves S, Anderson RA, Roussel AM (2009) Green tea extract decreases oxidative stress and improves insulin sensitivity in an animal model of insulin resistance, the fructose-fed rat. J Am Coll Nutr 28:355–361

    Article  CAS  PubMed  Google Scholar 

  36. Damasceno DC, Volpato GT, Calderon IP, Rudge MVC (2002) Oxidative stress and diabetes in pregnant rats. Anim Reprod Sci 72:235–244

    Article  CAS  PubMed  Google Scholar 

  37. Kc K, Shakya S, Zhang H (2015) Gestational diabetes mellitus and macrosomia: a literature review. Ann Nutr Metab 66(suppl 2):14–20

    Article  CAS  PubMed  Google Scholar 

  38. Harper LM, Tita A, Biggio JR (2015) The institute of medicine guidelines for gestational weight gain after a diagnosis of gestational diabetes and pregnancy outcomes. Am J Perinatol 32(3):239–246

    PubMed  Google Scholar 

  39. Couturier K, Qin B, Batandier C, Awada M, Hininger-Favier I, Canini F, Leverve X, Roussel AM, Anderson RA (2011) Cinnamon increases liver glycogen in an animal model of insulin resistance. Metabolism 60:1590–1597

    Article  CAS  PubMed  Google Scholar 

  40. Lin WJ, Kirksey A (1976) Effects of different levels of dietary iron on pregnancy superimposed upon growth in the rat. J Nutr 106:543–554

    CAS  PubMed  Google Scholar 

  41. Ward RJ, Wilmet S, Legssyer R, Crichton RR (2003) Iron supplementation during pregnancy-a necessary or toxic supplement ? Bioinorg Chem Appl 1(2):169–176

    Article  CAS  PubMed Central  Google Scholar 

  42. Vilà L, Roglans N, Perna V, Sánchez RM, Vázquez-Carrera M, Alegret M, Laguna JC (2011) Liver AMP/ATP ratio and fructokinase expression are related to gender differences in AMPK activity and glucose intolerance in rats ingesting liquid fructose. J Nutr Biochem 22(8):741–751

    Article  PubMed  Google Scholar 

  43. Rodríguez L, Otero P, Panadero MI, Rodrigo S, Álvarez-Millán JJ, Bocos C (2015) Maternal fructose intake induces insulin resistance and oxidative stress in male, but not female, offspring. J Nutr Metab 2015 (Article ID 158091):8. doi:10.1155/2015/158091

    Google Scholar 

  44. Sampaio AFS, Silva M, Dornas WC, Costa DC, Silva ME, dos Santos RC, de Lima WG, Pedrosa ML (2014) Iron toxicity mediated by oxidative stress enhances tissue damage in an animal model of diabetes. Biometals 27(2):349–361

    Article  CAS  PubMed  Google Scholar 

  45. Kobayashi H, Matsuda M, Fukuhara A, Komuro R, Shimomura I (2009) Dysregulated glutathione metabolism links to impaired insulin action in adipocytes. Am J Physiol Endocrinol Metab 296:E1326–E1334

    Article  CAS  PubMed  Google Scholar 

  46. Kruse MS, Vega MC, Rey M, Coirini H (2014) Sex differences in LXR expression in normal offspring and in rats born to diabetic dams. J Endocrinol. doi:10.1530/JOE-14-0054

    PubMed  Google Scholar 

  47. Aouacheri O, Saka S, Krim M, Messaadia A, Maidi I (2015) The investigation of the oxidative stress-related parameters in type 2 diabetes mellitus. Can J Diabetes 39:44–49

    Article  PubMed  Google Scholar 

  48. De Haan JB, Cristiano F, Iannello RC, Kola I (1995) Cu/Zn-superoxide dismutase and glutathione peroxidase during aging. Biochem Mol Biol Int 35:1281–1297

    PubMed  Google Scholar 

  49. Perluigi M, Butterfield DA (2012) Oxidative stress and down syndrome: a route toward Alzheimer-like dementia. Curr Gerontol Geriatr Res 72:490–494

    Google Scholar 

  50. Berggren KL, Chen J, Fox J, Miller J, Dodds L, Dugas B, Vargas L, Lothian A, McAllum E, Volitakis I, Roberts B, Bush AI, Fox JH (2015) Neonatal iron supplementation potentiates oxidative stress, energetic dysfunction and neurodegeneration in the R6/2 mouse model of Huntington’s disease. Redox Biol 4:363–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mason RP, Casu M, Butler N, Breda C, Campesan S, Clapp J, Green EW, Dhulkhed D, Kyriacou CP, Giorgini F (2013) Glutathione peroxidase activity is neuroprotective in models of Huntington’s disease. Nat Genet 45:1249–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim CH, Kim HK, Bae SJ, Park JY, Lee KU (2011) Association of elevated serum ferritin concentration with insulin resistance and impaired glucose metabolism in Korean men and women. Metabolism 60(3):414–420

    Article  CAS  PubMed  Google Scholar 

  53. Hayes JD, Pulford DJ (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30(6):445–600

    Article  CAS  PubMed  Google Scholar 

  54. Madra S, Mann F, Francis JE, Manson MM, Smith AG (1996) Modulation by iron of hepatic microsomal and nuclear cytochrome P450, and cytosolic glutathione S-transferase and peroxidase in C57BL/10ScSn mice induced with polychlorinated biphenyls (Aroclor 1254). Toxicol Appl Pharmacol 136(1):79–86

    Article  CAS  PubMed  Google Scholar 

  55. Rodríguez L, Panadero MI, Roglans N, Otero P, Álvarez-Millán JJ, Laguna JC, Bocos C (2013) Fructose during pregnancy affects maternal and fetal leptin signaling. J Nutr Biochem 24(10):1709–1716

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Rectorat of the Lebanese University, Beirut-Lebanon, to support this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Hininger-Favier.

Ethics declarations

All experimental procedure was reviewed and approved by the Joseph Fourier University Institutional Ethic Committee for Animal Experiment. The rats were maintained and handled in agreement with the Guide for the Care and Use of Laboratory Animals.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zein, S., Sitti, F., Osman, M. et al. Middle Iron-Enriched Fructose Diet on Gestational Diabetes Risk and on Oxidative Stress in Offspring Rats. Biol Trace Elem Res 175, 405–413 (2017). https://doi.org/10.1007/s12011-016-0791-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0791-3

Keywords

Navigation