Skip to main content
Log in

Selenium Deficiency Affects the mRNA Expression of Inflammatory Factors and Selenoprotein Genes in the Kidneys of Broiler Chicks

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the influence of Se deficiency on the transcription of inflammatory factors and selenoprotein genes in the kidneys of broiler chicks. One hundred fifty 1-day-old broiler chicks were randomly assigned to two groups fed with either a low-Se diet (L group, 0.033 mg/kg Se) or an adequate Se diet (C group, 0.2 mg/kg Se). The levels of uric acid (UA) and creatinine (Cr) in the serum and the mRNA levels of 6 inflammatory factors and 25 selenoprotein genes in the kidneys were measured as the clinical signs of Se deficiency occurred at 20 days old. The results indicated that the contents of UA and Cr in the serum increased in L group (p < 0.05), and the mRNA levels of the inflammatory factors (NF-κB, iNOS, COX-2, and TNF-α) increased in L group (p < 0.05). Meanwhile, the mRNA levels of PTGEs and HO-1 were not changed. In addition, 25 selenoprotein transcripts displayed ubiquitous expression in the kidneys of the chicks. The mRNA levels of 14 selenoprotein genes (Dio1, Dio2, GPx3, Sepp1, SelH, SelI, SelK, Sepn1, SelO, SelW, Sep15, SelT, SelU, and SelS) decreased, and 9 selenoprotein genes (GPx1, GPx2, GPx4, SelPb, Txnrd1, Txnrd2, Txnrd3, SPS2, and SelM) increased in L group (p < 0.05), but the Dio3 and Sepx1 mRNA levels did not change. The results indicated that Se deficiency resulted in kidney dysfunction, activation of the NF-κB pathway, and a change in selenoprotein gene expression. The changes of inflammatory factor and selenoprotein gene expression levels were directly related to the abnormal renal functions induced by Se deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mariotti M, Ridge PG, Zhang Y, et al (2012) Composition and evolution of the vertebrate and mammalian selenoproteomes. PLoS One 7:e33066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rederstorff M, Krol A, Lescure A (2006) Understanding the importance of selenium and selenoproteins in muscle function. Cell Mol Life Sci 63:52–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huang JQ, Li DL, Zhao H, et al (2011) The selenium deficiency disease exudative diathesis in chicks is associated with downregulation of seven common selenoprotein genes in liver and muscle. J Nutr 141:1605–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gao X, Xing H, Li S, et al (2012) Selenium regulates gene expression of selenoprotein W in chicken gastrointestinal tract. Biol Trace Elem Res 145:181–188

    Article  CAS  PubMed  Google Scholar 

  5. Sun D, Li C, Gao J, et al (2015) Effects of selenium deficiency on principal indexes of chicken kidney function. Biol Trace Elem Res 164:58–63

    Article  CAS  PubMed  Google Scholar 

  6. Maehira F, Luyo GA, Miyagi I, et al (2002) Alterations of serum selenium concentrations in the acute phase of pathological conditions. Clin Chim Acta 316:137–146

    Article  CAS  PubMed  Google Scholar 

  7. Galley HF, Davies MJ, Webster NR (1996) Xantine oxidase activity and free radical generation in patients with sepsis syndrome. Crit Care Med 24:1649–1653

    Article  CAS  PubMed  Google Scholar 

  8. Stoedter M, Renko K, Hog A, et al (2010) Selenium controls the sex-specific immune response and selenoprotein expression during the acute-phase response in mice. Biochem J 429:43–51

    Article  CAS  PubMed  Google Scholar 

  9. Tirosh O, Levy E, Reifen R (2007) High selenium diet protects against TNBS-induced acute inflammation, mitochondrial dysfunction, and secondary necrosis in rat colon. Nutrition 23:878–886

    Article  CAS  PubMed  Google Scholar 

  10. Sunde RA, Raines AM, Barnes KM, et al (2009) Selenium status highly regulates selenoprotein mRNA levels for only a subset of the selenoproteins in the selenoproteome. Biosci Rep 29:329–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu Y, Zhao H, Zhang Q, et al (2012) Prolonged dietary selenium deficiency or excess does not globally affect selenoprotein gene expression and/or protein production in various tissues of pigs. J Nutr 142:1410–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou JC, Zhao H, Li JG, et al (2009) Selenorotein gene expression in thyroid and pituitary of young pigs is not affected by dietary selenium deficiency or excess. J Nutr 139:1061–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang JL, Zhang ZW, Shan AS, et al (2014) Effects of dietary selenium deficiency or excess on gene expression of selenoprotein N in chicken muscle tissues 157:234–241

  14. Zhang JL, Li JL, Huang XD, et al (2012) Dietary selenium regulation of transcript abundance of selenoprotein N and selenoprotein Win chicken muscle tissues. Biometals 25:297–307

    Article  PubMed  Google Scholar 

  15. Liu CP, Fu J, Lin SL, et al (2014) Effects of dietary selenium deficiency on mRNA levels of twenty-one selenoprotein genes in the liver of layer chicken. Biol Trace Elem Res 159:192–198

    Article  CAS  PubMed  Google Scholar 

  16. Lin SL, Wang CW, Tan SR, et al (2014) Selenium deficiency inhibits the conversion of thyroidal thyroxine (T4) to triiodothyronine (T3) in chicken thyroids. Biol Trace Elem Res 161:263–271

    Article  CAS  PubMed  Google Scholar 

  17. Liang Y, Lin SL, Wang CW, et al (2014) Effect of selenium on selenoprotein expression in the adipose tissue of chickens. Biol Trace Elem Res 160:41–48

    Article  CAS  PubMed  Google Scholar 

  18. Yao HD, Zhao WC, Zhao X, et al (2014) Selenium deficiency mainly influences the gene expressions of antioxidative selenoproteins in chicken muscles. Biol Trace Elem Res 161:318–327

    Article  CAS  PubMed  Google Scholar 

  19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  20. Najafi M (2014) Serum creatinine role in predicting outcome after cardiac surgery beyond acute kidney injury. World J Cardiol 6:1006–1021

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wahlqvist ML (2013) Antioxidant relevance to human health. Asia Pac J Clin Nutr 22:171–176

    CAS  PubMed  Google Scholar 

  22. Xia Y, Peng C, Zhou Z, et al (2012) Clinical significance of saliva urea, creatinine, and uric acid levels in patients with chronic kidney disease. Zhong Nan Da Xue Xue Bao Yi Xue Ban 37:1171–1176

    CAS  PubMed  Google Scholar 

  23. Makarov SS (2000) NF-κB as a therapeutic target in chronic inflammation: recent advances. Mol Med Today 6:441–448

    Article  CAS  PubMed  Google Scholar 

  24. Pando MP, Verma IM (2000) Signal-dependent and -independent degradation of free and NF-kappa B-bound IkappaBalpha. J. Biol. Chem. 275:21278–21286

    Article  CAS  PubMed  Google Scholar 

  25. Abate A, Oberle S, Schröder H (1998) Lipopolysaccharide-induced expression of cyclooxygenase-2 in mouse macrophages is inhibited by chloromethylketones and a direct inhibitor of NF-kappa B translocation. Prostaglandins Other Lipid Mediat 56:277–290

    Article  CAS  PubMed  Google Scholar 

  26. Israf DA, Khaizurin TA, Syahida A, et al (2007) Cardamonin inhibits COX and iNOS expression via inhibition of p65NF-kappaB nuclear translocation and Ikappa-B phosphorylation in RAW 264.7 macrophage cells. Mol Immunol 44:673–679

    Article  CAS  PubMed  Google Scholar 

  27. Ackerman WE, Summerfield TL, Vandre DD, et al (2008) Nuclear factor-kappa B regulates inducible prostaglandin E synthase expression in human amnion mesenchymalcells. Biol Reprod 78:68–76

    Article  CAS  PubMed  Google Scholar 

  28. Oh YC, Jeong YH, Ha JH, et al (2014) Oryeongsan inhibits LPS-induced production of inflammatory mediators via blockade of the NF-kappa B, MAPK pathways and leads to HO-1 induction in macrophage cells. BMC Complement Altern Med 14:242

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jeong DW, Yoo MH, Kim TS, et al (2002) Protection of mice from allergen-induced asthma by selenite: prevention of eosinophil infiltration by inhibition of NF-kappa B activation. J Biol Chem 277:17871–17876

    Article  CAS  PubMed  Google Scholar 

  30. Hwang JT, Kim YM, Surh YJ, et al (2006) Selenium regulates cyclooxygenase-2 and extracellular signalregulated kinase signaling pathways by activating AMP-activated protein kinase in colon cancer cells. Cancer Res 66:10057–10063

    Article  CAS  PubMed  Google Scholar 

  31. Youn HS, Lim HJ, Choi YJ, et al (2008) Selenium suppresses the activation of transcription factor NF-kappa B and IRF3 induced by TLR3 or TLR4 agonists. Int Immunopharmacol 8(3):495–501

    Article  CAS  PubMed  Google Scholar 

  32. Vincent JL, Forceville X (2008) Critically elucidating the role of selenium. Curr Opin Anesthesiol 21:148–154

    Article  Google Scholar 

  33. Maehira F, Miyagi I, Eguchi Y (2003) Selenium regulates transcription factor NF-kB activation during the acute phase reaction. Clin Chem Acta 334:163–171

    Article  CAS  Google Scholar 

  34. Grundemann C, Garcia-Kaufer M, Sauer B, et al (2013) Traditionally used Veronica officinalis inhibits proinflammatory mediators via the NF-κB signalling pathway in a human lung cell line. J Ethnopharmacol 145:118–126

    Article  PubMed  Google Scholar 

  35. Surh YJ, Chun KS, Cha HH, et al (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat Res 480-481:243–268

    Article  CAS  PubMed  Google Scholar 

  36. Raabe T, Bukrinsky M, Currie RA (1998) Relative contribution of transcription and translation to the induction of tumor necrosis factor-alpha by lipopolysaccharide. J Biol Chem 273:974–980

    Article  CAS  PubMed  Google Scholar 

  37. Hochberg MC, Tracy JK, Hawkins-Holt M, et al (2003) Comparison of the efficacy of the tumour necrosis factor alpha blocking agents adalimumab, etanercept, and infliximab when added to methotrexate in patients with active rheumatoid arthritis. Ann Rheum Dis 62:213–216

    Article  Google Scholar 

  38. Pae HO, Chung HT (2009) Heme oxygenase-1: its therapeutic roles in inflammatory diseases. Immune Netw 9:12–19

    Article  PubMed  PubMed Central  Google Scholar 

  39. Terry CM, Clikeman JA, Hoidal JR, et al (1998) Effect of tumor necrosis factor-alpha and interleukin-1 alpha on heme oxygenase-1 expression in human endothelial cells. Am J Physiol 274:883–891

    Google Scholar 

  40. Srisook K, Cha YN (2005) Super-induction of HO-1 in macrophages stimulated with lipopolysaccharide by prior depletion of glutathione decreases iNOS expression and NO production. Nitric Oxide 12:70–79

    Article  CAS  PubMed  Google Scholar 

  41. Ashino T, Yamanaka R, Yamamoto M, et al (2008) Negative feedback regulation of lipopolysaccharide-induced inducible nitric oxide synthase gene expression by heme oxygenase-1 induction in macrophages. Mol Immunol 45:2106–2115

    Article  CAS  PubMed  Google Scholar 

  42. Liu T, Laidlaw TM, Feng C, et al (2012) Prostaglandin E2 deficiency uncovers a dominant role for thromboxane A2 in house dust mite-induced allergic pulmonary inflammation. Proc Natl Acad Sci U S A 109:12692–12697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barnes KM, Evenson JK, Raines AM, et al (2009) Transcript analysis of the selenoproteome indicates that dietary selenium requirements of rats based on elenium-regulated selenoprotein mRNA levels are uniformly less than those based on glutathione peroxidaseactivity. J Nutr 139:199–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Crosley LK, Méplan C, Nicol F, et al (2007) Differential regulation of expression of cytosolic and mitochondrial thioredoxin reductase in rat liver and kidney. Arch Biochem Biophys 459:178–188

    Article  CAS  PubMed  Google Scholar 

  45. Bermano G, Nicol F, Dyer JA, et al (1995) Tissue-specific regulation of selenoenzyme gene expression during selenium deficiency in rats. Biochem J 311:425–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Seyedali A, Berry MJ (2014) Nonsense-mediated decay factors are involved in the regulation of selenoprotein mRNA levels during selenium deficiency. RNA 20:1248–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hoffmann PR, Berry MJ (2008) The influence of selenium on immune responses. Mol Nutr Food Res 52:1273–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Carlson BA, Yoo MH, Shrimali RK, et al (2010) Role of selenium-containing proteins in T-cell and macrophage function. Proc Nutr Soc 69:300–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Curran JE, Jowett JB, Elliott KS, et al (2005) Genetic variation in selenoprotein S influences inflammatory response. Nat Genet 37:1234–1241

    Article  CAS  PubMed  Google Scholar 

  50. Duntas LH (2009) Selenium and inflammation: underlying anti-inflammatory mechanisms. Horm Metab Res 41:443–447

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Research Fund for the Doctoral Program of Higher Education (20122325110018), the National Natural Science Foundations of China (31472104; 31272626; 30871902), and the National Science and Technology Support Program (2013BAD20B04). The authors thank the members in the Veterinary Internal Medicine Laboratory at the College of Veterinary Medicine, Northeast Agricultural University for their help in analyzing the data.

Conflict of Interest

All authors declare that they have no competing interests.

Compliance with Ethical Standards

All of the procedures used in this experiment were approved by the Institutional Animal Care and Use Committee of Northeast Agricultural University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-shan Shan.

Additional information

All authors have read the manuscript and agreed to submit it in its current form for consideration for publication in the journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Jl., Xu, B., Huang, Xd. et al. Selenium Deficiency Affects the mRNA Expression of Inflammatory Factors and Selenoprotein Genes in the Kidneys of Broiler Chicks. Biol Trace Elem Res 171, 201–207 (2016). https://doi.org/10.1007/s12011-015-0512-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0512-3

Keywords

Navigation