Skip to main content

Advertisement

Log in

Aluminum Chloride- and Norepinephrine-Induced Immunotoxicity on Splenic Lymphocytes by Activating β2-AR/cAMP/PKA/NF-κB Signal Pathway in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We found in our previous research that aluminum (Al) exposure induced immunotoxicity on spleen and increased norepinephrine (NE) content in serum from rats. However, it is unclear how NE is involved in the AlCl3 immunotoxicity on rats. Therefore, this experiment was designed to explore the mechanism of AlCl3 and NE-induced immunotoxicity on the splenic lymphocytes. Eighty male Wistar rats were orally exposed to AlCl3 (0, 64, 128, and 256 mg/kg BW) through drinking water for 120 days. Al contents in brain and spleen; NE contents in serum and in the hypothalamus; β2-AR density; cAMP content; β2-AR, PKA, and NF-κB mRNA expression levels; and protein expressions of PKA and nuclear NF-κB in splenic lymphocytes of AlCl3-treated rats were examined. The results showed that AlCl3 increased NE content in serum, the β2-AR density, the β2-AR and PKA (C-subunits) mRNA expression levels, cAMP content and the PKA (C-subunits) protein expression levels in lymphocytes, whereas, decreased NE content in the hypothalamus, the NF-κB (p65) mRNA expression level and nuclear NF-κB (p65) protein expression level in lymphocytes. These results indicated that the accumulated AlCl3 in spleen and the increased NE in serum induced the immunotoxicity on splenic lymphocytes by activating β2-AR/cAMP/PKA/NF-κB signal pathway in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhu YZ, Hu CW, Li XW, Shao B, Sun H, Zhao HS, Li YF (2012) Suppressive effects of aluminum trichloride on the T lymphocyte immune function of rats. Food Chem Toxicol 50:532–535

    Article  CAS  PubMed  Google Scholar 

  2. Ward RJ, McCrohan CR, White KN (2006) Influence of aqueous aluminium on the immune system of the freshwater crayfish Pacifasticus leniusculus. Aquat Toxicol 77:222–228

    Article  CAS  PubMed  Google Scholar 

  3. Tzanno-Martins C, Azevedo LS, Orii N, Futata E, Jorgetti V, Marcondes M, Duarte AJ (1996) The role of experimental chronic renal failure and aluminum in intoxication in cellular immune response. Nephrol Dial Transplant 11:474–480

    Article  CAS  PubMed  Google Scholar 

  4. Tarantino G, Savastano S, Capone D, Colao A (2011) Spleen: a new role for an old player? World J Gastroenterol 17:3776–3784

    Article  PubMed Central  PubMed  Google Scholar 

  5. Mebius RE, Kraal G (2005) Structure and function of the spleen. Nat Rev Immunol 5:606–616

    Article  CAS  PubMed  Google Scholar 

  6. She Y, Wang N, Chen CX, Zhu YZ, Xia SL, Hu CW, Li YF (2012) Effects of aluminum on immune functions of cultured splenic T and B lymphocytes in rats. Biol Trace Elem Res 147:246–250

    Article  CAS  PubMed  Google Scholar 

  7. Golub MS, Takeuchi PT, Gershwin ME, Yoshida SH (1993) Influence of dietary aluminum on cytokine production by mitogen-stimulated spleen cells from Swiss Webster mice. Immunopharmacol Immunotoxicol 15:605–619

    Article  CAS  PubMed  Google Scholar 

  8. Hu CW, Li J, Zhu YZ, Bai CS, Zhang JH, Xia SL, Li YF (2013) Effects of Al on the splenic immune function and NE in rats. Food Chem Toxicol 62:194–198

    Article  CAS  PubMed  Google Scholar 

  9. Klein RL, Wilson SP, Dzielak DJ, Yang WH, Viveros OH (1982) Opioid peptides and noradrenaline co-exist in large dense-cored vesicles from sympathetic nerve. Neuroscience 7:2255–2261

    Article  CAS  PubMed  Google Scholar 

  10. Lundberg JM, Rudehill A, Sollevi A, Fried G, Wallin G (1989) Co-release of neuropeptide Y and noradrenaline from pig spleen in vivo: importance of subcellular storage, nerve impulse frequency and pattern, feedback regulation and resupply by axonal transport. Neuroscience 28:475–486

    Article  CAS  PubMed  Google Scholar 

  11. Ehrenstrom F, Ungell AL (1990) Nerve impulse-induced release of endogenous noradrenaline and adrenaline from the perfused cod spleen. J Comp Physiol 160:401–406

    Article  CAS  Google Scholar 

  12. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES (2000) The sympathetic nerve-an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52:595–638

    CAS  PubMed  Google Scholar 

  13. Shimizu N, Hori T, Nakane H (1994) An interleukin-1 beta-induced noradrenaline release in the spleen is mediated by brain corticotropin-releasing factor: an in vivo microdialysis study in conscious rats. Brain Behav Immun 8:14–23

    Article  CAS  PubMed  Google Scholar 

  14. Qiu YH, Cheng C, Dai L, Peng YP (2005) Effect of endogenous catecholamines in lymphocytes on lymphocyte function. J Neuroimmunol 167:45–52

    Article  CAS  PubMed  Google Scholar 

  15. Makino S, Hashimoto K, Gold PW (2002) Multiple feedback mechanisms activating corticotropin-releasing hormone system in the brain during stress. Pharmacol Biochem Behav 73:147–158

    Article  CAS  PubMed  Google Scholar 

  16. Liberman AC, Refojo D, Antunica M, Holsboer F, Arzt E (2012) Underlying mechanisms of cAMP- and glucocorticoid-mediated inhibition of FasL expression in activation-induced cell death. Mol Immunol 50:220–235

    Article  CAS  PubMed  Google Scholar 

  17. Takahashi N, Tetsuka T, Uranishi H, Okamoto T (2002) Inhibition of the NF-κB transcriptional activity by protein kinase A. Eur J Biochem 269:4559–4565

    Article  CAS  PubMed  Google Scholar 

  18. Parry GC, Mackman N (1997) Role of cyclic AMP response element-binding protein in cyclic AMP inhibition of NF-kappaB-mediated transcription. J Immunol 159:5450–5456

    CAS  PubMed  Google Scholar 

  19. Haraguchi S, Good RA, Day NK (1995) Immunosuppressive retroviral peptides: cAMP and cytokine patterns. Immunol Today 16:595–603

    Article  CAS  PubMed  Google Scholar 

  20. Yokel RA (2002) Brain uptake, retention, and efflux of aluminum and manganese. Environ Health Perspect 110:699–704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Favarato M, Zatta P, Perazzolo M, Fontana L, Nicolini M (1992) Aluminum(III) influences the permeability of the blood–brain barrier to [14C]sucrose in rats. Brain Res 569:330–355

    Article  CAS  PubMed  Google Scholar 

  22. Kim YS, Lee MH, Wisniewski HM (1986) Aluminum induced reversible change in permeability of the blood-brain barrier to [14C] sucrose. Brain Res 377:286–291

    Article  CAS  PubMed  Google Scholar 

  23. Julka D, Vasishta RK, Gill KD (1996) Distribution of aluminum in different brain regions and body organs of rat. Biol Trace Elem Res 52:181–192

    Article  CAS  PubMed  Google Scholar 

  24. Kaur A, Joshi K, Minz RW, Gill KD (2006) Neurofilament phosphorylation and disruption: a possible mechanism of chronic aluminium toxicity in Wistar rats. Toxicology 219:1–10

    Article  CAS  PubMed  Google Scholar 

  25. Julka D, Gill KD (1996) Altered calcium homeostasis: a possible mechanisms of aluminium-induced neurotoxicity. Biochim Biophys Acta 1315:47–54

    Article  PubMed  Google Scholar 

  26. Brown TS, Schwartz R (1992) Aluminum accumulation in serum, liver and spleen of Fe-depleted and Fe-adequate rats. Biol Trace Elem Res 34:1–10

    Article  CAS  PubMed  Google Scholar 

  27. Wenk GL, Stemmer KL (1981) The influence of ingested aluminum upon norepinephrine and dopamine levels in the rat brain. Neurotoxicology 2:347–353

    CAS  PubMed  Google Scholar 

  28. Ravi SM, Prabhu BM, Raju TR, Bindu PN (2000) Long-term effects of postnatal aluminium exposure on acetylcholinesterase activity and biogenic amine neurotransmitters in rat brain. Indian J Physiol Pharmacol 44:473–478

    CAS  PubMed  Google Scholar 

  29. Tsunoda M, Sharma RP (1999) Altered dopamine turnover in murine hypothalamus after low-dose continuous oral administration of aluminum. J Trace Elem Med Biol 13:224–231

    Article  CAS  PubMed  Google Scholar 

  30. Milanese M, Lkhayat MI, Zatta P (2001) Inhibitory effect of aluminum on dopamine beta-hydroxylase from bovine adrenal gland. J Trace Elem Med Biol 15:139–141

    Article  CAS  PubMed  Google Scholar 

  31. Wenk GL, Stemmer KL (1982) Activity of the enzymes dopamine-beta-hydroxylase and phenylethanolamine-N-methyltransferase in discrete brain regions of the copper-zinc deficient rat following aluminum ingestion. Neurotoxicology 3:93–99

    CAS  PubMed  Google Scholar 

  32. Erazi H, Ahboucha S, Gamrani H (2011) Chronic exposure to aluminum reduces tyrosine hydroxylase expression in the substantia nigra and locomotor performance in rats. Neurosci Lett 487:8–11. doi:10.1016/j.neulet.2010.09.053

    Article  CAS  PubMed  Google Scholar 

  33. Silva VS, Cordeiro JM, Matos MJ, Oliveira CR, Goncalves PP (2002) Aluminum accumulation and membrane fluidity alteration in synaptosomes isolated from rat brain cortex following aluminum ingestion: effect of cholesterol. Neurosci Res 44:181–193

    Article  CAS  PubMed  Google Scholar 

  34. Ohba S, Hiramatsu M, Edamatsu R, Mori I, Mori A (1994) Metal ions affect neuronal membrane fluidity of rat cerebral cortex. Neurochem Res 19:237–241

    Article  CAS  PubMed  Google Scholar 

  35. Qiu YH, Peng YP, Wang JH (1996) Immunoregulatory role of neurotransmitters. Adv Neuroimmunol 6:223–231

    Article  CAS  PubMed  Google Scholar 

  36. Motobu M, El-Abasy M, Na KJ, Vainio O, Toivanen P, Hirota Y (2003) Effects of 6-hydroxydopamine on the development of the immune system in chickens. J Vet Med Sci 65:35–42

    Article  CAS  PubMed  Google Scholar 

  37. Takayanagi Y, Osawa S, Ikuma M, Takagaki K, Zhang J, Hamaya Y, Yamada T, Sugimoto M, Furuta T, Miyajima H, Sugimoto K (2012) Norepinephrine suppresses IFN-γ and TNF-α production by murine intestinal intraepithelial lymphocytes via the beta-1-adrenoceptor. J Neuroimmunol 245:66–74

    Article  CAS  PubMed  Google Scholar 

  38. Zhang JH, Hu CW, Zhu YZ, Liu SM, Bai CS, Han YF, Xia SL, Li YF (2013) Effects of norepinephrine on immune functions of cultured splenic lymphocytes exposed to aluminum trichloride. Biol Trace Elem Res 154:275–280

    Article  CAS  PubMed  Google Scholar 

  39. Khan MM, Sansoni P, Silverman ED, Engleman EG, Melmon KL (1986) Beta-adrenergic receptors on human suppressor, helper, and cytolytic lymphocytes. Biochem Pharmacol 35:1137–1142

    Article  CAS  PubMed  Google Scholar 

  40. Webster JI, Tonelli L, Sternberg EM (2002) Neuroendocrine regulation of immunity. Annu Rev Immunol 20:125–163

    Article  CAS  PubMed  Google Scholar 

  41. Kohm AP, Sanders VM (2001) Norepinephrine and beta 2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo. Pharmacol Rev Dec 53:487–525

    CAS  Google Scholar 

  42. Madden KS (2003) Catecholamines, sympathetic innervation, and immunity. Brain Behav Immun 17:5–10

    Article  Google Scholar 

  43. Liang HP, Wang ZG, Zhu PF, Luo Y, Geng B, Xu X (1999) The suppression of T cell functions and its relationship with the change of signal transduction after trauma. Natl Med J China 79:525–528

    CAS  Google Scholar 

  44. Fedyk ER, Adawi A, Looney RJ, Phipps RP (1996) Regulation of IgE and cytokine production by cAMP: implications for extrinsic asthma. Clin Immunol Immunopathol 81:101–113

    Article  CAS  PubMed  Google Scholar 

  45. Brudvik KW, Taskén K (2012) Modulation of T cell immune functions by the prostaglandin E(2)-cAMP pathway in chronic inflammatory states. Br J Pharmacol 166:411–419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Kammer GM (1988) The adenylate cyclase-cAMP-protein kinase A pathway and regulation of immune response. Immunol Today 9:222–229

    Article  CAS  PubMed  Google Scholar 

  47. Bartik MM, Brooks WH, Roszman TL (1993) Modulation of T cell proliferation by stimulation of the beta-adrenergic receptor: lack of correlation between inhibition of T cell proliferation and cAMP accumulation. Cell Immunol 148:408–421

    Article  CAS  PubMed  Google Scholar 

  48. Vazquez A, Auffredou MT, Galanaud P, Leca G (1991) Modulation of IL-2 and IL-4 dependent human B cell proliferation by cyclic AMP. J Immunol 146:4222–4227

    CAS  PubMed  Google Scholar 

  49. Kalinichenko VV, Mokyr MB, Graf LH Jr, Cohen RL, Chambers DA (1999) Norepinephrine-mediated inhibition of antitumor cytotoxic T lymphocyte generation involves a beta-adrenergic receptor mechanism and decreased TNF-α gene expression. J Immunol 163:2492–2499

    CAS  PubMed  Google Scholar 

  50. Johnson DA, Akamine P, Radzio-Andzelm E, Madhusudan M, Taylor SS (2001) Dynamics of cAMP-dependent protein kinase. Chem Rev 101:2243–2270

    Article  CAS  PubMed  Google Scholar 

  51. Gerondakis S, Grumont R, Rourke I, Grossmann M (1998) The regulation and roles of Rel/NF-κB transcription factors during lymphocyte activation. Curr Opin Immunol 10:353–359

    Article  CAS  PubMed  Google Scholar 

  52. Pahl HL (1999) Activators and target genes of Rel/NF-κB transcription factors. Oncogene 18:6853–6866

    Article  CAS  PubMed  Google Scholar 

  53. Köntgen F, Grumont RJ, Strasser A, Metcalf D, Li R, Tarlinton D, Gerondakis S (1995) Mice lacking the c-rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity, and interleukin-2 expression. Genes Dev 9:1965–1977

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by a Grant from the National Science Foundation Project (31172375, 31302147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiu, C., Ren, L., Li, M. et al. Aluminum Chloride- and Norepinephrine-Induced Immunotoxicity on Splenic Lymphocytes by Activating β2-AR/cAMP/PKA/NF-κB Signal Pathway in Rats. Biol Trace Elem Res 162, 168–174 (2014). https://doi.org/10.1007/s12011-014-0149-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0149-7

Keywords

Navigation