Skip to main content
Log in

Selenium Pretreatment Upregulates the Antioxidant Defense and Methylglyoxal Detoxification System and Confers Enhanced Tolerance to Drought Stress in Rapeseed Seedlings

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In order to observe the possible regulatory role of selenium (Se) in relation to the changes in ascorbate (AsA) glutathione (GSH) levels and to the activities of antioxidant and glyoxalase pathway enzymes, rapeseed (Brassica napus) seedlings were grown in Petri dishes. A set of 10-day-old seedlings was pretreated with 25 μM Se (Sodium selenate) for 48 h. Two levels of drought stress (10% and 20% PEG) were imposed separately as well as on Se-pretreated seedlings, which were grown for another 48 h. Drought stress, at any level, caused a significant increase in GSH and glutathione disulfide (GSSG) content; however, the AsA content increased only under mild stress. The activity of ascorbate peroxidase (APX) was not affected by drought stress. The monodehydroascorbate reductase (MDHAR) and glutathione reductase (GR) activity increased only under mild stress (10% PEG). The activity of dehydroascorbate reductase (DHAR), glutathione S-transferase (GST), glutathione peroxidase (GPX), and glyoxalase I (Gly I) activity significantly increased under any level of drought stress, while catalase (CAT) and glyoxalase II (Gly II) activity decreased. A sharp increase in hydrogen peroxide (H2O2) and lipid peroxidation (MDA content) was induced by drought stress. On the other hand, Se-pretreated seedlings exposed to drought stress showed a rise in AsA and GSH content, maintained a high GSH/GSSG ratio, and evidenced increased activities of APX, DHAR, MDHAR, GR, GST, GPX, CAT, Gly I, and Gly II as compared with the drought-stressed plants without Se. These seedlings showed a concomitant decrease in GSSG content, H2O2, and the level of lipid peroxidation. The results indicate that the exogenous application of Se increased the tolerance of the plants to drought-induced oxidative damage by enhancing their antioxidant defense and methylglyoxal detoxification systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AO:

Ascorbate oxidase

APX:

Ascorbate peroxidase

AsA:

Ascorbic acid

CAT:

Catalase

CDNB:

1-Chloro-2,4-dinitrobenzene

DHA:

Dehydroascorbate

DHAR:

Dehydroascorbate reductase

DTNB:

5,5′-Dithio-bis (2-nitrobenzoic acid)

EDTA:

Ethylenediaminetetraacetic acid

Gly I:

Glyoxalase I

Gly II:

Glyoxalase II

GR:

Glutathione reductase

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

GPX:

Glutathione peroxidase

GST:

Glutathione S-transferase

MDA:

Malondialdehyde

MDHA:

Monodehydroascorbate

MDHAR:

Monodehydroascorbate reductase

MG:

Methylglyoxal

NADPH:

Nicotinamide adenine dinucleotide phosphate

NTB:

2-Nitro-5-thiobenzoic acid

PEG:

Polyethylene glycol

ROS:

Reactive oxygen species

Se:

Selenium

SLG:

S-d-lactoylglutathione

TBA:

Thiobarbituric acid

TCA:

Trichloroacetic acid

References

  1. Kramer PJ (1980) Drought, stress, and the origin of adaptation. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley, New York, pp 7–20

    Google Scholar 

  2. Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  3. Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  4. Van Breusegem F, Vranova E, Dat JF, Inze D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405–414

    Article  Google Scholar 

  5. Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  CAS  Google Scholar 

  6. Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2006) Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc spiked soils. Plant Physiol 140:613–623

    Article  PubMed  CAS  Google Scholar 

  7. Hoque MA, Banu MN, Nakamura Y, Shimoishi Y, Murata Y (2007) Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. J Plant Physiol 165:813–824

    Article  PubMed  Google Scholar 

  8. Yadav SK, Singla-Pareek SL, Sopory SK (2008) An overview on the role of methylglyoxal and glyoxalases in plants. Drug Metabol Drug Interact 23:51–68

    Article  PubMed  CAS  Google Scholar 

  9. Hossain MA, Hossain MZ, Fujita M (2009) Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Aust J Crop Sci 3:53–64

    CAS  Google Scholar 

  10. Ray S, Dutta S, Halder J, Ray M (1994) Inhibition of electron flow through complex I of the mitochondrial respiratory chain of Ehrlich ascites carcinoma cells by methylglyoxal. Biochem J 303:69–72

    PubMed  CAS  Google Scholar 

  11. Martins AMTBS, Cordeiro CAA, Freire AMJP (2001) In situ analysis of methylglyoxal metabolism in Saccharomyces cerevisiae. FEBS Lett 499:41–44

    Article  PubMed  CAS  Google Scholar 

  12. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  13. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  14. Li Y, Liu Y, Zhang J (2010) Advances in the research on the AsA–GSH cycle in horticultural crops. Front Agric China 4:84–90

    Article  Google Scholar 

  15. Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53:1283–1304

    Article  PubMed  CAS  Google Scholar 

  16. Sgherri CLM, Navari-Izzo F (2000) Antioxidative enzyme in wheat subjected to increasing water deficit and watering. J Plant Physiol 157:273–279

    CAS  Google Scholar 

  17. Acar O, Turkan I, Ozdemir F (2001) Superoxide dismutase and peroxidase activities in drought sensitive and resistant barley (Hordeum vulgare L.) varieties. Acta Physiol Plant 23:351–356

    Article  CAS  Google Scholar 

  18. Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK (2005) Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem Biophys Res Commun 337:61–67

    Article  PubMed  CAS  Google Scholar 

  19. Yadav SK, Singla-Pareek SL, Reddy MK, Sopory SK (2005) Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett 579:6265–6271

    Article  PubMed  CAS  Google Scholar 

  20. Veena RVS, Sopory SK (1999) Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J 17:385–395

    Article  PubMed  CAS  Google Scholar 

  21. Hossain MA, Hasanuzzaman M, Fujita M (2010) Coordinate induction of antioxidant defense and glyoxalase system by exogenous proline and glycinebetaine is correlated with salt tolerance in mung bean. Front Agric China. doi:10.1007/s11703-010-1070-2

    Google Scholar 

  22. Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2008) Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res 17:171–180

    Article  PubMed  CAS  Google Scholar 

  23. El-Shabrawi H, Kumar B, Kaul T, Reddy MK, Singla-Pareek SL, Sopory SK (2010) Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice. Protoplasma 245:85–96

    Article  PubMed  CAS  Google Scholar 

  24. Hossain MA, Hasanuzzaman M, Fujita M (2010) Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiol Mol Biol Plants 16:259–272

    Article  CAS  Google Scholar 

  25. Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci USA 100:14672–14677

    Article  PubMed  CAS  Google Scholar 

  26. Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  PubMed  CAS  Google Scholar 

  27. Turakainen M, Hartikainen H, Seppänen MM (2004) Effects of selenium treatments on potato (Solanum tuberosum L.) growth and concentrations of soluble sugars and starch. J Agric Food Chem 52:5378–5382

    Article  PubMed  CAS  Google Scholar 

  28. Djanaguiraman M, Devi DD, Shanker AK, Sheeba A, Bangarusamy U (2005) Selenium—an antioxidative protectant in soybean during senescence. Plant Soil 272:77–86

    Article  CAS  Google Scholar 

  29. Filek M, Keskinen R, Hartikainen H, Szarejko I, Janiak A, Miszalski Z, Golda A (2008) The protective role of selenium in rape seedlings subjected to cadmium stress. J Plant Physiol 165:833–844

    Article  PubMed  CAS  Google Scholar 

  30. Yao X, Chu J, Wang G (2009) Effects of selenium on wheat seedlings under drought stress. Biol Trace Elem Res 130:283–290

    Article  PubMed  CAS  Google Scholar 

  31. Hawrylak-Nowak B (2009) Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biol Trace Elem Res 132:259–269

    Article  PubMed  CAS  Google Scholar 

  32. Chu J, Yao X, Zhang Z (2010) Responses of wheat seedlings to exogenous selenium supply under cold stress. Biol Trace Elem Res 136:355–363

    Article  PubMed  CAS  Google Scholar 

  33. Hawrylak-Nowak B, Matraszek R, Szymańska M (2010) Selenium modifies the effect of short-term chilling stress on cucumber plants. Biol Trace Elem Res 138:307–315

    Article  PubMed  CAS  Google Scholar 

  34. Cartes P, Jara AA, Pinilla L, Rosas A, Mora ML (2010) Selenium improves the antioxidant ability against aluminium-induced oxidative stress in ryegrass roots. Ann Appl Biol 156:297–307

    Article  CAS  Google Scholar 

  35. Hasanuzzaman M, Hossain MA, Fujita M (2010) Selenium in higher plants: Physiological role, antioxidant metabolism and abiotic stress tolerance. J Plant Sci 5:354–375

    Article  CAS  Google Scholar 

  36. Hasanuzzaman M, Hossain MA, Fujita M (2011) Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res. doi:10.1007/s12011-011-8958-4

    Google Scholar 

  37. Kuznetsov VV, Kholodova VP, Kuznetsov VIV, Yagodin BA (2003) Selenium regulates the water status of plants exposed to drought. Dokl Biol Sci 390:266–268

    Article  PubMed  CAS  Google Scholar 

  38. Kong L, Wang M, Bi D (2005) Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress. Plant Growth Regul 45:155–163

    Article  CAS  Google Scholar 

  39. Ríos JJ, Blasco B, Cervilla LM, Rosales MA, Sanchez-Rodriguez E, Romero L, Ruiz JM (2009) Production and detoxification of H2O2 in lettuce plants exposed to selenium. Ann Appl Biol 154:107–116

    Article  Google Scholar 

  40. Gross S (1979) Antioxidant relationship between selenium-dependent glutathione peroxidase and tocopherol. Am J Pediatr Hematol Oncol 1:61–69

    PubMed  CAS  Google Scholar 

  41. Lobanov AV, Hatfield DL, Gladyshev VN (2008) Reduced reliance on the trace element selenium during evolution of mammals. Genome Biol 9:R62

    Article  PubMed  Google Scholar 

  42. Huang C, He W, Guo J, Chang X, Su P, Zhang L (2005) Increased sensitivity to salt stress in ascorbate-deficient Arabidopsis mutant. J Exp Bot 56:3041–3049

    Article  PubMed  CAS  Google Scholar 

  43. Paradiso A, Berardino R, de Pinto MC, Sanità di Toppi L, Storelli MM, Tommasi F, De Gara L (2008) Increase in ascorbate-glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant Cell Physiol 49:362–374

    Article  PubMed  CAS  Google Scholar 

  44. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  45. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  46. Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in the regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385–395

    CAS  Google Scholar 

  47. Elia AC, Galarini R, Taticchi MI, Dorr AJM, Mantilacci L (2003) Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicol Environ Saf 55:162–167

    Article  PubMed  CAS  Google Scholar 

  48. Principato GB, Rosi G, Talesa V, Govannini E, Uolila L (1987) Purification and characterization of two forms of glyoxalase II from rat liver and brain of Wistar rats. Biochem Biophys Acta 911:349–355

    Article  PubMed  CAS  Google Scholar 

  49. Yu CW, Murphy TM, Lin CH (2003) Hydrogen peroxide-induces chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Funct Plant Biol 30:955–963

    Article  CAS  Google Scholar 

  50. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  51. Morales F, Abadia A, Abadia J (2006) Photoinhibition and photoprotection under nutrient deficiencies, drought and salinity. In: Demmig-Adams B, Adams WW III, Matoo AK (eds) Photoprotection, photoinhibition, gene regulation, and environment, advances in photosynthesis and respiration. Springer, The Netherlands, pp 65–85

    Chapter  Google Scholar 

  52. Young CB, Jung J (1999) Water-induced oxidative stress and antioxidant defenses in rice plants. J Plant Physiol 155:255–261

    Google Scholar 

  53. Jain M, Choudhary D, Kale RK, Bhalla-Sarin N (2002) Salt- and glyphosate-induced increase in glyoxalase I activity in cell lines of groundnut (Arachis hypogaea). Physiol Plant 114:499–505

    Article  PubMed  CAS  Google Scholar 

  54. Hartikainen H, Xue T, Piironen V (2000) Selenium as an antioxidant and pro-oxidant in ryegrass. Plant Soil 225:193–200

    Article  CAS  Google Scholar 

  55. Djanaguiraman M, Prasad PVV, Seppanen M (2010) Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol Biochem 48:999–1007

    Article  PubMed  CAS  Google Scholar 

  56. Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes controlling development through hormone signaling. Plant Cell 15:1212–1226

    Article  Google Scholar 

  57. Ball L, Accotto G-P, Bechtold U, Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S, Mullineaux PM (2004) Evidence for a direct link between glutathione synthesis and stress defence gene expression in Arabidopsis. Plant Cell 16:2448–2462

    Article  PubMed  CAS  Google Scholar 

  58. Tambussi EA, Bartoli CG, Beltrano J, Guiamet JJ, Araus JL (2000) Oxidative damage to thylakoid proteins in water-stressed leaves of wheat (Triticum aestivum). Physiol Plant 108:398–404

    Article  CAS  Google Scholar 

  59. Shalata A, Neumann PM (2001) Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J Exp Bot 52:2207–2211

    PubMed  CAS  Google Scholar 

  60. Sharma P, Dubey RS (2005) drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46:209–221

    Article  CAS  Google Scholar 

  61. Gilbert HF, McLean V, McLean M (1990) Molecular and cellular aspects of thiol-disulphide exchange. Adv Enz 63:169–172

    Google Scholar 

  62. Navari-Izzo F, Meneguzzo S, Loggini B, Vazzana C, Sgherri CLM (1997) The role of the glutathione system during dehydration of Boea hygroscopica. Physiol Palant 99:23–30

    Article  CAS  Google Scholar 

  63. Mittova V, Theodoulou FL, Kiddle G, Gómez L, Volokita M, Tal M, Foyer CH, Guy M (2003) Coordinate induction of glutathione biosynthesis and glutathione-metabolizing enzymes is correlated with salt tolerance in tomato. FEBS Lett 554:417–421

    Article  PubMed  CAS  Google Scholar 

  64. Kadioglu A, Saruhan N, Sağlam A, Terzi R, Acet T (2010) Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Regul. doi:10.1007/s10725-010-9532-3

    Google Scholar 

  65. Anderson JW, McMahon PJ (2001) The role of glutathione in the uptake and metabolism of sulfur and selenium. In: Grill D, Tausz MM, de Kok LJ (eds) Significance of glutathione to plant adaptation to the environment. Kluwer, The Netherlands, pp 57–99

    Google Scholar 

  66. Sumithra K, Jutur PP, Carmel BD, Reddy AR (2006) Salinity-induced changes in two cultivars of Vigna radiata: responses of antioxidative and proline metabolism. Plant Growth Regul 50:11–22

    Article  CAS  Google Scholar 

  67. Li JM, Jin H (2007) Regulation of brassinosteroid signaling. Trends Plant Sci 12:37–41

    Article  PubMed  CAS  Google Scholar 

  68. Shao HB, Liang ZS, Shao MA (2005) Dynamic changes of antioxidative enzymes of 10 wheat genotypes at soil water deficits. Biointerfaces 42:187–195

    Article  PubMed  CAS  Google Scholar 

  69. Mittler R, Poulos TL (2005) Ascorbate peroxidase. In: Smirnoff N (ed) Antioxidants and Reactive Oxygen Species in Plants. Blackwell, Oxford, pp 87–100

    Google Scholar 

  70. Aroca R, Irigoyen JJ, Sanchez-Diaz M (2003) Drought enhances maize chilling tolerance. II. Photosynthetic traits and protective mechanisms against oxidative stress. Physiol Plant 117:540–549

    Article  PubMed  CAS  Google Scholar 

  71. Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  Google Scholar 

  72. Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N (2006) Transgenic arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163:1179–1184

    Article  PubMed  CAS  Google Scholar 

  73. Eltayeb AE, Kawano N, Badawi G, Kaminaka H, Sanekata T, Morishima I (2006) Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Plant 127:57–65

    Article  CAS  Google Scholar 

  74. Wang Z, Zhang L, Xiao Y, Chen W, Tang K (2010) Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. J Integr Plant Biol 52:400–409

    Article  PubMed  CAS  Google Scholar 

  75. Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition: topics of photosynthesis, vol 9. Elsevier, Amsterdam, pp 227–287

    Google Scholar 

  76. Reddy AR, Chaitanya KV, Jutur PP, Sumithra K (2004) Differential antioxidative responses to water stress among five mulberry (Morus alba L.) cultivars. Environ Exp Bot 52:33–42

    Article  CAS  Google Scholar 

  77. Sofo A, Tuzio AC, Dichio B, Xiloyannis C (2005) Influence of water deficit and rewatering on the components of the ascorbate-glutathione cycle in four interspecific Prunus hybrids. Plant Sci 169:403–412

    Article  CAS  Google Scholar 

  78. Khanna-Chopra R, Selote DS (2007) Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than -susceptible wheat cultivar under field conditions. Environ Exp Bot 60:276–283

    Article  CAS  Google Scholar 

  79. Akbulut M, Çakır S (2010) The effects of Se phytotoxicity on the antioxidant systems of leaf tissues in barley (Hordeum vulgare L.) seedlings. Plant Physiol Biochem 48:160–166

    Article  PubMed  CAS  Google Scholar 

  80. Herbette P, Lenne C, Leblanc N, Julien JL, JoeDrevet R, Roeckel-Drevet P (2002) Two GPX-like proteins from Lycopersicon esculentum and Helianthus annuus are antioxidant enzymes with phospholipid hydroperoxide glutathione peroxidase and thioredoxin peroxidase activities. Eur J Biol Chem 269:2414–2420

    Article  CAS  Google Scholar 

  81. Dixon DP, Skipsey M, Edwards R (2010) Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 71:338–350

    Article  PubMed  CAS  Google Scholar 

  82. Anderson JV, Davis DG (2004) Abiotic stress alters transcript profiles and activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. Physiol Plant 120:421–433

    Article  PubMed  CAS  Google Scholar 

  83. Halušková L, Valentovičová K, Huttová J, Mistrík I, Tamás L (2009) Effect of abiotic stresses on glutathione peroxidase and glutathione S-transferase activity in barley root tips. Plant Physiol Biochem 47:1069–1074

    Article  PubMed  Google Scholar 

  84. Sánchez-Casas P, Klessig DF (1994) A salicylic acidbinding activity and a salicylic acid-inhibitable catalase activity are present in a variety of plant species. Plant Physiol 106:1675–1779

    PubMed  Google Scholar 

  85. Feierabend J, Streb P, Schmidt M, Dehne S, Shang W (1996) Expression of catalase and its relation to light stress and stress tolerance. In: Grillo S, Leone A (eds) Physical stresses in plants: Genes and their products for tolerance. Springer, Berlin, pp 223–234

    Google Scholar 

  86. Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  PubMed  CAS  Google Scholar 

  87. Pan Y, Wu LJ, Yu ZL (2006) Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycorhiza uralensis Fisch). J Plant Growth Regul 49:157–165

    Article  CAS  Google Scholar 

  88. Zhang JX, Kirkham MB (1994) Drought stress induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol 35:785–791

    CAS  Google Scholar 

  89. Creighton DJ, Hamilton DS (2001) Brief history of glyoxalase I and what we have learned about metal ion-dependent, enzyme-catalyzed isomerizations. Arch Biochem Biophys 387:1–10

    Article  PubMed  CAS  Google Scholar 

  90. Thornalley PJ (2003) Glyoxalase I—structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 31:1343–1348

    Article  PubMed  CAS  Google Scholar 

  91. Vander Jagt DL (1993) Glyoxalase II: molecular characteristics, kinetics and mechanism. Biochem Soc Trans 21:522–527

    PubMed  CAS  Google Scholar 

  92. Creighton DJ, Migliorini M, Pourmotabbed T, Guha MK (1988) Optimization of efficiency in the glyoxalase pathway. Biochemistry 27:7376–7384

    Article  PubMed  CAS  Google Scholar 

  93. Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer C (2002) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot 89:841–850

    Article  PubMed  CAS  Google Scholar 

  94. Garg N, Manchanda G (2009) ROS generation in plants: boon or bane? Plant Biosys 143:81–96

    Article  Google Scholar 

  95. Moussa HR, Abdel-Aziz SM (2008) Comparative response of drought tolerant and drought sensitive maize genotypes to water stress. Aust J Crop Sci 1:31–36

    Google Scholar 

  96. Selote DS, Khanna-Chopra R (2010) Antioxidant response of wheat roots to drought acclimation. Protoplasma 245:153–163

    Article  PubMed  CAS  Google Scholar 

  97. Shehab GG, Ahmed OK, El-Beltagi HS (2010) Effects of various chemical agents for alleviation of drought stress in rice plants (Oryza sativa L.). Not Bot Hort Agrobot Cluj 38:139–148

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Fujita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasanuzzaman, M., Fujita, M. Selenium Pretreatment Upregulates the Antioxidant Defense and Methylglyoxal Detoxification System and Confers Enhanced Tolerance to Drought Stress in Rapeseed Seedlings. Biol Trace Elem Res 143, 1758–1776 (2011). https://doi.org/10.1007/s12011-011-8998-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-8998-9

Keywords

Navigation