Skip to main content
Log in

Spectroscopic and Molecular Modeling Studies on the Interaction Between a Fluorine-Containing Triazole Derivative and Human Serum Albumin

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The interaction between 4-(4-fluorobenzylideneamino)-5-propyl-4H-1,2,4-triazole-3-thiol (FBTZ) and human serum albumin (HSA) under simulative physiological conditions was investigated by fluorescence, UV–vis absorption and circular dichroism (CD) spectroscopy as well as molecular modeling method. Fluorescence spectroscopic data showed that the fluorescence quenching of HSA was a result of the formation of FBTZ–HSA complex. According to the modified Stern–Volmer equation, the effective quenching constants (K a) of FBTZ to HSA were obtained at three different temperatures. The enthalpy change (ΔH) and entropy change (ΔS) were calculated on the basis of van′t Hoff equation, and the results showed that hydrogen-bonding and van der Waals forces were the dominant intermolecular forces to stabilize the complex. Site marker competitive replacement experiments demonstrated that the binding of FBTZ to HSA primarily took place in sub-domain IIA (Sudlow’s site I). The binding distance (r) between FBTZ and the tryptophan residue of HSA was estimated according to the theory of fluorescence resonance energy transfer. The conformational investigation showed that the presence of FBTZ induced some changes of secondary structure of HSA. Molecular modeling study further confirmed the binding mode obtained by experimental study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Parmar K, Suthar B, Prajapati S et al (2010) Synthesis and biological activity of novel 1,3,5-trisubstituted 1,2,4-triazole derivatives. J Heterocycl Chem 47:156–161

    CAS  Google Scholar 

  2. Ezabadi RR, Camoutsis C, Zoumpoulakis P et al (2008) Sulfonamide-1,2,4-triazole derivatives as antifungal and antibacterial agents: synthesis, biological evaluation, lipophilicity, and conformational studies. Bioorg Med Chem Lett 16:1150–1161

    Article  CAS  Google Scholar 

  3. Kucukguzel I, Tatar E, Kucukguzel SG et al (2008) Synthesis of some novel thiourea derivatives obtained from 5-[(4-aminophenoxy)methyl]-4-alkyl/aryl-2,4-dihydro-3H-1,2, 4-triazole-3-thiones and evaluation as antiviral/anti-HIV and anti-tuberculosis agents. Eur J Med Chem 43:381–392

    Article  PubMed  Google Scholar 

  4. Sanghvi YS, Bhattacharya BK, Kini GD et al (1990) Growth inhibition and induction of cellular differentiation of human myeloid leukemia cells in culture by carbamoyl congeners of ribavirin. J Med Chem 33:336–344

    Article  PubMed  CAS  Google Scholar 

  5. Rudnicka W, Osmialowska Z (1979) Cyanoalkylation of 4-amino-1,2,4-triazole-3-thione. Acta Pol Pharm 36(4):411–419

    CAS  Google Scholar 

  6. Al-Masoudi NA, Yaseen AS, Al-Dweri MN (2004) Synthesis, antitumor and antiviral properties of some 1,2,4-triazole derivatives. Farmaco 59:775–783

    Article  PubMed  Google Scholar 

  7. Lopez RC (1993) Herbicidal 1-(disubstituted carbamoyl or thiocarbamoyl)-1,2,4-triazol-3-ylsulfonates and thiosulfonates. US Patent 5211739

  8. Nakayama, Yoshida KR, Morita K (1989) Carbamoyltriazoles, and their production and use. US Patent 4810271

  9. Zhu DR, Xu Y, Yu Z et al (2002) A novel bis(trans-thiocyanate)iron(II) spin-transition molecular material with bidentate triaryltriazole ligands and its bis(cis-thiocyanate)iron(II) high-spin isomer. Chem Mater 14:838–843

    Article  CAS  Google Scholar 

  10. Cheng HM, Zhu DR, Lu W et al (2010) Synthesis and crystal structure characterization of 3,5-bis(2-quinolyl)-1,2,4-triazole. J Heterocycl Chem 47:210–213

    Article  CAS  Google Scholar 

  11. Purser S, Moore PR, Swallow S, Gouverneur V (2008) Fluorine in medicinal chemistry. Chem Soc Rev 37:320–330

    Article  PubMed  CAS  Google Scholar 

  12. Brown JR, Shockley P (1982) Lipid–protein interactions, vol 1. Wiley, New York

    Google Scholar 

  13. Carter D, Ho JX (1994) Advances in protein chemistry, vol. 45. Academic, New York, pp 153–203

    Google Scholar 

  14. Gelamo EL et al (2002) Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants: spectroscopy and modeling. Biochim Biophys Acta 1594:84–99

    Article  PubMed  CAS  Google Scholar 

  15. Li JY, Zhu XL, Yang C, Shi RW (2010) Characterization of the binding of angiotensin II receptor blockers to human serum albumin using docking and molecular dynamics simulation. J Mol Model 16:789–798

    Article  PubMed  CAS  Google Scholar 

  16. He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215

    Article  PubMed  CAS  Google Scholar 

  17. Reidenberg MM, Erill S (1986) Drug-protein binding. Praeger, New York

    Google Scholar 

  18. Sudlow G, Birkett DJ, Wade DN (1975) Characterization of two specific drug binding sites on human serum albumin. Mol Pharmacol 11:824–832

    PubMed  CAS  Google Scholar 

  19. Efrink MR, Ghiron CA (1981) Fluorescence quenching studies with proteins. Anal Biochem 114:199–227

    Article  Google Scholar 

  20. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Plenum Press, New York, pp 237–265

    Google Scholar 

  21. Ashoka S, Seetharamappa J, Kandagal PB et al (2006) Investigation of the interaction between trazodone hydrochloride and bovine serum albumin. J Lumin 121:179–186

    Article  CAS  Google Scholar 

  22. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  23. Zhang YZ, Xiang X, Mei P et al (2009) Spectroscopic studies on the interaction of Congo Red with bovine serum albumin. Spectrochim Acta A 72:907–914

    Article  Google Scholar 

  24. Zhang YZ, Zhou B, Zhang XP et al (2009) Interaction of malachite green with bovine serum albumin: determination of the binding mechanism and binding site by spectroscopic methods. J Hazard Mater 163:1345–1352

    Article  PubMed  CAS  Google Scholar 

  25. Hu YJ, Liu Y, Sun TQ et al (2006) Binding of anti-inflammatory drug cromolyn sodium to bovine serum albumin. Int J Biol Macromol 39:280–285

    Article  PubMed  CAS  Google Scholar 

  26. Lehrer SS (1971) Solute perturbation of protein fluorescence. Quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10:3254–3263

    Article  PubMed  CAS  Google Scholar 

  27. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Plenum Press, New York, pp 277–285

    Book  Google Scholar 

  28. Zhang YZ, Zhou B, Liu YX et al (2008) Fluorescence study on the interaction of bovine serum albumin with P-aminoazobenzene. J Fluoresc 18:109–118

    Article  PubMed  CAS  Google Scholar 

  29. Timaseff SN (1972) Proteins of biological fluids. Pergamon Press, Oxford, pp 511–519

    Google Scholar 

  30. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3120

    Article  PubMed  CAS  Google Scholar 

  31. Il'ichev YV, Perry JL, Simon JD (2002) Interaction of ochratoxin a with human serum albumin. Preferential binding of the dianion and pH effects. J Phys Chem B 106:452–459

    Article  Google Scholar 

  32. Förster T (1965) Delocalized excitation and excitation transfer. In: Sinanoglu O (ed) Modern quantum chemistry. Academic, New York, pp 93–137

    Google Scholar 

  33. Valeur B (2001) Molecular fluorescence: principles and applications. Wiley Press, New York

    Google Scholar 

  34. Cyril L, Earl JK, Sperry WM (1961) Biochemists’ handbook. E. & F. N, Spon

    Google Scholar 

  35. Kamat BP, Seetharamappa J (2004) In vitro study on the interaction of mechanism of tricyclic compounds with bovine serum albumin. J Pharm Biomed Anal 35:655–664

    Article  PubMed  CAS  Google Scholar 

  36. Cui FL, Fan J, Li JP, Hu ZD (2004) Interactions between 1-benzoyl-4-p-chlorophenyl thiosemicarbazide and serum albumin: investigation by fluorescence spectroscopy. Bioorg Med Chem 12:151–157

    Article  PubMed  CAS  Google Scholar 

  37. Zhang HX, Huang X, Mei P et al (2006) Studies on the interaction of tricyclazole with β-cyclodextrin and human serum albumin by spectroscopy. J Fluoresc 16:287–294

    Article  PubMed  CAS  Google Scholar 

  38. Sulkowska A (2002) Interaction of drugs with bovine and human serum albumin. J Mol Struct 614:227–232

    Article  CAS  Google Scholar 

  39. Yang P, Gao F (2002) The principle of bioinorganic chemistry. Science Press, Beijing, pp 489–494

    Google Scholar 

  40. Cui FL et al (2009) Characterization of the interaction between 8-bromoadenosine with human serum albumin and its analytical application. Spectrochim Acta A 74:964–971

    Article  Google Scholar 

  41. Li YS et al (2010) Interaction of coomassie brilliant blue G250 with human serum albumin: probing of the binding mechanism and binding site by spectroscopic and molecular modeling methods. J Mol Struct 968:24–31

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the National Natural Science Foundation of China (20873096, 20921062, and 20621502) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Lei Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, JX., Ge, YS., Jiang, FL. et al. Spectroscopic and Molecular Modeling Studies on the Interaction Between a Fluorine-Containing Triazole Derivative and Human Serum Albumin. Biol Trace Elem Res 143, 562–578 (2011). https://doi.org/10.1007/s12011-010-8835-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8835-6

Keywords

Navigation