Skip to main content

Advertisement

Log in

Lipid Peroxidation and Antioxidant System in the Tumor and in the Blood of Patients with Nasopharyngeal Carcinoma

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Reactive oxygen species play a key role in cancer development by inducing and maintaining the oncogenic phenotypes of cancer cells. In this study, we examined lipid peroxidation and antioxidant enzymes activities in the blood and in the tumor of nasopharyngeal carcinoma patients. Plasma malondialdehyde, conjugated dienes, erythrocytes catalase, and superoxide dismutase activities have been measured in 30 untreated nasopharyngeal carcinoma patients and 30 controls on one hand. On the other hand, tumor malondialdehyde level, catalase, and superoxide dismutase activities have been measured in five nasopharyngeal carcinoma patients and compared with four controls. The lipid peroxidation was confirmed in the plasma by the high levels of malondialdehyde and conjugated dienes (p < 0.001, respectively). Additionally, significantly higher concentrations of malondialdehyde were found in biopsies compared to the control group (p < 0.001). In erythrocytes, superoxide dismutase activity was higher in patients than in controls (p < 0.05), while it was unchanged in the tumor (p > 0.05). Both erythrocytes and tumor catalase activities were significantly lower in patients than in controls (p < 0.001, respectively). Statistical studies have shown a positive correlation between malondialdehyde level and IgA antibodies level against Epstein–Barr virus capsid antigen (p < 0.05). In conclusion, we reported the presence of an oxidative stress in the blood and in the biopsies of nasopharyngeal carcinoma patients where Epstein–Barr virus seems to play a role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

NPC:

Nasopharyngeal carcinoma

EBV:

Epstein–Barr virus

MDA:

Malondialdehyde

CAT:

Catalase

SOD:

Superoxide dismutase

CD:

Conjugated dienes

LPO:

Lipid peroxidation

GPx:

Glutathione peroxidase

VCA:

Viral capsid antigen

EA:

Early antigen

EBNA:

Epstein–Barr nuclear antigen

References

  1. Ben Abdallah M (1997) Epidemiologie des cancers en Tunisie. Registre de l’institut Salah Azaez.

  2. Henle G, Henle W (1976) Epstein–Barr-virus specific IgA serum antibodies as an outstanding feature of nasopharyngeal carcinoma. Int J Cancer 17:1–7.

    Article  CAS  PubMed  Google Scholar 

  3. Raab-traub N (1992) Epstein–Barr virus and nasopharyngeal carcinoma. Semin Cancer Biol 3:297–307.

    CAS  PubMed  Google Scholar 

  4. Zhang M, Liu L, Cheng L et al (2003) Express of plasma ROS, SOD and GSH-PX in patients with nasopharyngeal carcinoma. Lin Chuang Er Bi Yan Hou Ke Za Zhi 17:650–651.

    PubMed  Google Scholar 

  5. Su Y, Xia YF, Yang H.L et al (2003) Changes of superoxide dismutase (SOD) and metallothionien (MT) before, during, and after radiotherapy for nasopharyngeal carcinoma and their significance. Ai Zheng 22:629–633.

    CAS  PubMed  Google Scholar 

  6. Segawa Y, Oda Y, Yamamoto H et al (2008) Overexpression of inducible nitric oxide synthase and accumulation of 8-OHdG in nasopharyngeal carcinoma. Histopathology 52:213–223.

    CAS  PubMed  Google Scholar 

  7. Cerimele F, Battle T, Lynch R et al (2005) Reactive oxygen signalling and MAPK activation distinguish Epstein–Barr virus EBV-positive versus EBV-negative Burkitt’s lymphoma. Proc Natl Acad Sci 102:175–179.

    Article  CAS  PubMed  Google Scholar 

  8. Jones TG, Wood JD (1996) Oxidant production by human b lymphocytes: Detection of activity and identification of components involved. Methods (A Companion to Methods in Enzymology) 9:619–627.

    Article  CAS  Google Scholar 

  9. Lassoued S, Ben Ameur R, Ayadi W et al (2008) Epstein–Barr virus induces an oxidative stress during the early stages of infection in B lymphocytes, epithelial, and lymphoblastoid cell lines. Mol Cell Biochem 313:179–86.

    Article  CAS  PubMed  Google Scholar 

  10. Mates JM, Perez-Gomez C, Nunez de Castro I (1999) Antioxidant enzymes and human diseases. Clin Biochem 32:595–603.

    Article  CAS  PubMed  Google Scholar 

  11. Sies H (1991) Role of reactive oxygen species in biological processes. Klin Wochenschr 69:965–8.

    Article  CAS  PubMed  Google Scholar 

  12. Semrau F, Kuhl RJ, Ritter S et al (1998) Manganese superoxide dismutase (MnSOD) and autoantibodies against MnSOD in acute viral infection. J Med Virol 55:161–167.

    Article  CAS  PubMed  Google Scholar 

  13. Ritter K, Kuhl RJ, Semrau F et al (1994) Manganese superoxide dismutase as a target of autoantibodies in acute Epstein–Barr virus infection. J Exp Med 180:1995–1998.

    Article  CAS  PubMed  Google Scholar 

  14. Toussirot E, Roudier J (2007) Pathophysiological links between rheumatoid arthritis and the Epstein–Barr virus: An update. Jt Bone Spine 74:418–426.

    Article  CAS  Google Scholar 

  15. Kurien BT, Scofield RH (2003) Free radical mediated peroxidative damage in systemic lupus erythematosus. Life Sci 73:1655–1666.

    Article  CAS  PubMed  Google Scholar 

  16. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126.

    Article  CAS  PubMed  Google Scholar 

  17. Markland S, Markland G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474.

    Article  Google Scholar 

  18. Henle W, Henle G, Zajac BA et al (1970) Differential reactivity of human serums with early antigens induced by Epstein–Barr virus. Science 169:188–190.

    Article  CAS  PubMed  Google Scholar 

  19. Winterbourn CC, Stern A (1987) Human red cells scavenge extracellular hydrogen peroxide and inhibit formation of hypochlorous acid and hydroxyl radical. J Clin Invest 80:1486–1491.

    Article  CAS  PubMed  Google Scholar 

  20. Jiang X, Chen F (1992) The effect of lipid peroxides and superoxide dismutase in systemic lupus erythematosus: a preliminary study. Clin Immunol Immunopathol 63:39–44.

    Article  CAS  PubMed  Google Scholar 

  21. Michiels C, Raes M, Toussaint O et al (1994) Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic Biol Med 17:235–248.

    Article  CAS  PubMed  Google Scholar 

  22. Picardo M, Grammatico P, Roccella F et al (1996) Imbalance in the antioxidant pool in melanoma cells and normal melanocytes from patients with melanoma. J Invest Dermatol 107:322–326.

    Article  CAS  PubMed  Google Scholar 

  23. Miyake M, Fuchimoto S, Iwagaki H et al (1991) Production of hydroxyl radicals by tumor cells varies with cell type as measured by electron spin resonance spectrometry. Res Commun Chem Pathol Pharmacol 71:293–307.

    CAS  PubMed  Google Scholar 

  24. Huang YT, Sheen TS, Chen CL et al (1999) Profile of cytokine expression in nasopharyngeal carcinomas: A distinct expression of interleukin 1 in tumor and CD4+ T cells. Cancer Res 59:1599–1605.

    CAS  PubMed  Google Scholar 

  25. Tang KF, Tan SY, Chan SH et al (2001) A distinct expression of CC chemokines by macrophages in nasopharyngeal carcinoma: Implication for the intense tumor infiltration by T lymphocytes and macrophages. Hum Pathol 32:42–49.

    Article  CAS  PubMed  Google Scholar 

  26. Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51:794–798.

    CAS  PubMed  Google Scholar 

  27. Tschugguel W, Schneeberger C, Unfried G et al (1999) Expression of inducible nitric oxide synthase in human breast cancer depends on tumor grade. Breast Cancer Res Treat 56:145–151.

    Article  CAS  PubMed  Google Scholar 

  28. Tanaka H, Kijima H, Tokunaga T et al (1999) Frequent expression of inducible nitric oxide synthase in esophageal squamous cell carcinomas. Int J Oncol 14:1069–1073.

    CAS  PubMed  Google Scholar 

  29. Ambs S, Merriam WG, Bennett WP et al (1998) Frequent nitric oxide synthase-2 expression in human colon adenomas: implication for tumor angiogenesis and colon cancer progression. Cancer Res 58:334–341.

    CAS  PubMed  Google Scholar 

  30. Czesnikiewicz-Guzik M, Lorkowska B, Zapala J et al (2008) NADPH oxidase and uncoupled nitric oxide synthase are major sources of reactive oxygen species in oral squamous cell carcinoma. Potential implications for immune regulation under high oxidative stress conditions. J Physiol Pharmacol 59:139–152.

    CAS  PubMed  Google Scholar 

  31. Dalpke AH, Thomssen R, Ritter K (2003) Oxidative injury to endothelial cells due to Epstein–Barr virus-induced autoantibodies against manganese superoxide dismutase. J Med Virol 71:408–416.

    Article  CAS  PubMed  Google Scholar 

  32. Karray H, Ayadi W, Fki L et al (2005) Comparison of three different serological techniques for primary diagnosis and monitoring of nasopharyngeal carcinoma in two age groups from Tunisia. J Med Virol 75:593–602.

    Article  CAS  PubMed  Google Scholar 

  33. Toyokuni S, Okamoto K, Yodoi J et al (1995) Persistent oxidative stress in cancer. FEBS Lett 358:1–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work is dedicated to the memory of Dr. Hentati Basma, the last director of the Higher Institute of Biotechnology of Sfax, as well as the Laboratory of Biotechnology and Pathology. We will never forget her and she is always in our heart. We thank Dr. Mohamed Chaabouni, Pr Nabil Idriss, Riadh Ben Mansour, and Malek Mseddi for their help.

Conflict of Interest Statement

I declare that they have no conflict of interest related to the publication of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bochra Gargouri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gargouri, B., Lassoued, S., Ayadi, W. et al. Lipid Peroxidation and Antioxidant System in the Tumor and in the Blood of Patients with Nasopharyngeal Carcinoma. Biol Trace Elem Res 132, 27–34 (2009). https://doi.org/10.1007/s12011-009-8384-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8384-z

Keywords

Navigation