Skip to main content
Log in

The Impact of Transcriptional Profiling Cadherin Family and Therapeutic Approaches of Gastric Cancer: A Translational Outlook on Multi-omics Data Analysis

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The classical cadherin gene has been linked to a variety of human malignancies, including gastric cancer. However, the link between cadherin genes and gastric cancer outcome is still unclear. This study used multi-omics data to examine the cadherin genes that were differentially regulated in gastric cancer. Differential expression of genes, epigenetic, molecular alterations, and protein expression analyses was conducted. Male SD rats were given N-methyl-N-nitrosourea (MNU) to induce stomach carcinoma in order to verify the activation of cadherin genes. CDH5, CDH6, CDH11, and CDH24 levels were found to be considerably higher in gastric cancer and may serve as useful indicators of stomach adenocarcinoma (STAD). Cadherin genes with variable expression had considerably more promoter methylation in cancers than in normal tissues. In individuals with gastric cancer, high expression of these cadherin genes was related to lower total mortality and disease-free survival rates. Furthermore, compared to normal rats, gastric cancer-induced rats had significantly higher expression and distribution of CDH5, CDH6, CDH11, and CDH24. This study sheds new light on the diagnosis and prognosis of gastric cancer by identifying potential prognostic markers such as CDH5, CDH6, CDH11, and CDH24. The multi-omics approach provided a potential tool for target-based therapy by accurately predicting the outcome of stomach cancer. Researchers may gain more knowledge about the role of cadherin genes in the development and dissemination of tumors to the activated rat model of gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The following information was supplied regarding data availability: The raw measurements are available in the Supplemental File.

Abbreviations

BP:

Biological processes

CC:

Cell components

CDH:

Cadherin

CDH11:

Cadherin 11

CDH24:

Cadherin 24

CDH5:

Cadherin 5

CDH6:

Cadherin 6

CNV:

Copy number variation

CO:

Control group

CSCs:

Cancer stem cells

DAVID:

Database for Annotation, Visualization, and Integrated Discovery

DE:

Differentially expressed

DFS:

Disease-free survival

DNA:

Deoxyribonucleic acid

EMT:

Epithelial-mesenchymal transition

GBM:

Glioblastoma

GC:

Gastric cancer

GEPIA2:

Gene Expression Profiling Interactive Analysis version 2

GO:

Gene ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

KIRC:

Kidney renal clear cell carcinoma

KM:

Kaplan-Meier

MF:

Molecular function

MNU:

N-Methyl-N-nitrosourea

mRNA:

Messenger RNA

OS:

Overall survival

PBS:

Phosphate-buffered saline

PPI:

Protein-protein interaction

RNA:

Ribonucleic acid

ROC:

Receiver operating characteristic

SD:

Sprague Dawley

STAD:

Stomach adenocarcinoma

TCGA :

The Cancer Genome Atlas

TPM:

Transcripts per million

References

  1. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71, 209–249.

    PubMed  Google Scholar 

  2. Karimi, P., Islami, F., Anandasabapathy, S., Freedman, N. D., & Kamangar, F. (2014). Gastric cancer: Descriptive epidemiology, risk factors, screening, and prevention gastric cancer. Cancer epidemiology, biomarkers & prevention, 23, 700–713.

    Article  Google Scholar 

  3. Jamil, D., Palaniappan, S., Lokman, A., Naseem, M., & Zia, S. S. (2022). Diagnosis of gastric cancer using machine learning techniques in healthcare sector: A survey. Informatica, 45(7), 1.

    Article  Google Scholar 

  4. Chivu-Economescu, M., Matei, L., Necula, L. G., Dragu, D. L., Bleotu, C., & Diaconu, C. C. (2018). New therapeutic options opened by the molecular classification of gastric cancer. World journal of gastroenterology, 24, 1942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lazăr, D. C., Tăban, S., Cornianu, M., Faur, A., & Goldiş, A. (2016). New advances in targeted gastric cancer treatment. World journal of gastroenterology, 22, 6776.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Moreira, A. M., Pereira, J., Melo, S., Fernandes, M. S., Carneiro, P., Seruca, R., & Figueiredo, J. (2020). The extracellular matrix: An accomplice in gastric cancer development and progression. Cells, 9, 394. https://doi.org/10.3390/cells9020394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ucaryilmaz Metin, C., & Ozcan, G. (2022). Comprehensive bioinformatic analysis reveals a cancer-associated fibroblast gene signature as a poor prognostic factor and potential therapeutic target in gastric cancer. BMC Cancer, 22, 692–692. https://doi.org/10.1186/s12885-022-09736-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Luo, S., Lin, R., Liao, X., Li, D., & Qin, Y. (2021). Identification and verification of the molecular mechanisms and prognostic values of the cadherin gene family in gastric cancer. Scientific reports, 11, 23674–23674. https://doi.org/10.1038/s41598-021-03086-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wendeler, M. W., Drenckhahn, D., Geßner, R., & Baumgartner, W. (2007). Intestinal LI-cadherin acts as a Ca2+-dependent adhesion switch. Journal of molecular biology, 370, 220–230.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao, Z., Li, S., Li, S., Wang, J., Lin, H., & Fu, W. (2021). High expression of oncogene cadherin-6 correlates with tumor progression and a poor prognosis in gastric cancer. Cancer Cell International, 21, 493. https://doi.org/10.1186/s12935-021-02071-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang, Z., Yan, C., Yu, Z., He, C., Li, J., Li, C., Yan, M., Liu, B., Wu, Y., & Zhu, Z. (2021). Downregulation of CDH11 promotes metastasis and resistance to paclitaxel in gastric cancer cells. Journal of Cancer, 12, 65–75. https://doi.org/10.7150/jca.48193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. An, C. H., Je, E. M., Yoo, N. J., & Lee, S. H. (2015). Frameshift mutations of cadherin genes DCHS2, CDH10 and CDH24 genes in gastric and colorectal cancers with high microsatellite instability. Pathology Oncology Research, 21, 181–185. https://doi.org/10.1007/s12253-014-9804-8

    Article  CAS  PubMed  Google Scholar 

  13. Knipper, K., Fuchs, H. F., Alakus, H., Bruns, C. J., & Schmidt, T. (2023). Hereditary diffuse gastric cancer. Chirurgie (Heidelb). https://doi.org/10.1007/s00104-023-01806-z

    Article  PubMed  Google Scholar 

  14. Shenoy, S. (2019). CDH1 (E-cadherin) mutation and gastric cancer: Genetics, molecular mechanisms and guidelines for management. Cancer management and research, 11, 10477–10486. https://doi.org/10.2147/cmar.S208818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, Y., Yuan, H., Yu, Q., Pang, J., Sheng, M., & Tang, W. (2022). Bioinformatics analysis and structure of gastric cancer prognosis model based on lipid metabolism and immune microenvironment. Genes (Basel), 13, 1581. https://doi.org/10.3390/genes13091581

    Article  CAS  PubMed  Google Scholar 

  16. Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., Sun, Y., Jacobsen, A., Sinha, R., Larsson, E., Cerami, E., Sander, C., & Schultz, N. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal, 6, l1. https://doi.org/10.1126/scisignal.2004088

    Article  CAS  Google Scholar 

  17. Chandrashekar, D. S., Karthikeyan, S. K., Korla, P. K., Patel, H., Shovon, A. R., Athar, M., Netto, G. J., Qin, Z. S., Kumar, S., Manne, U., Creighton, C. J., & Varambally, S. (2022). UALCAN: An update to the integrated cancer data analysis platform. Neoplasia, 25, 18–27. https://doi.org/10.1016/j.neo.2022.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rich, J. T., Neely, J. G., Paniello, R. C., Voelker, C. C., Nussenbaum, B., & Wang, E. W. (2010). A practical guide to understanding Kaplan-Meier curves. Otolaryngology Head and Neck Surgery, 143, 331–336. https://doi.org/10.1016/j.otohns.2010.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tang, Z., Li, C., Kang, B., Gao, G., Li, C., & Zhang, Z. (2017). GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Research, 45, W98-w102. https://doi.org/10.1093/nar/gkx247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, T., Fu, J., Zeng, Z., Cohen, D., Li, J., Chen, Q., Li, B., & Liu, X. S. (2020). TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Research, 48, W509-w514. https://doi.org/10.1093/nar/gkaa407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vasaikar, S. V., Straub, P., Wang, J., & Zhang, B. (2018). LinkedOmics: Analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Research, 46, D956-d963. https://doi.org/10.1093/nar/gkx1090

    Article  CAS  PubMed  Google Scholar 

  22. Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N. T., Legeay, M., Fang, T., Bork, P., Jensen, L. J., & von Mering, C. (2020). The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research, 49, D605–D612. https://doi.org/10.1093/nar/gkaa1074

    Article  CAS  PubMed Central  Google Scholar 

  23. Dennis, G., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C., & Lempicki, R. A. (2003). DAVID: Database for annotation, visualization, and integrated discovery. Genome biology, 4, 1–11.

    Article  Google Scholar 

  24. Wu G, and Haw R. 2017. Functional interaction network construction and analysis for disease discovery. Protein Bioinformatics: From Protein Modifications and Networks to Proteomics 235–253

  25. Almora-Pinedo, Y., Arroyo-Acevedo, J., Herrera-Calderon, O., Chumpitaz-Cerrate, V., Hañari-Quispe, R., Tinco-Jayo, A., Franco-Quino, C., & Figueroa-Salvador, L. (2017). Preventive effect of Oenothera rosea on N-methyl-N-nitrosourea-(NMU) induced gastric cancer in rats. Clinical and Experimental Gastroenterology, 10, 327–332. https://doi.org/10.2147/ceg.S142515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yoon, S.-J., Park, J., Shin, Y., Choi, Y., Park, S. W., Kang, S.-G., Son, H. Y., & Huh, Y.-M. (2020). Deconvolution of diffuse gastric cancer and the suppression of CD34 on the BALB/c nude mice model. BMC Cancer, 20, 314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Machlowska, J., Baj, J., Sitarz, M., Maciejewski, R., & Sitarz, R. (2020). Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics and treatment strategies. International Journal of Molecular Sciences, 21, 4012. https://doi.org/10.3390/ijms21114012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bos, J. L., & Burgering, B. M. (2004). Molecular mechanisms in signal transduction and cancer. EMBO Reports, 5, 855–859. https://doi.org/10.1038/sj.embor.7400220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Menyhárt, O., & Győrffy, B. (2021). Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis. Computational and Structural Biotechnology Journal, 19, 949–960. https://doi.org/10.1016/j.csbj.2021.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Matsumura, T., Makino, R., & Mitamura, K. (2001). Frequent down-regulation of E-cadherin by genetic and epigenetic changes in the malignant progression of hepatocellular carcinomas. Clinical Cancer Research, 7, 594–599.

    CAS  PubMed  Google Scholar 

  31. Basu, A., & Tiwari, V. K. (2021). Epigenetic reprogramming of cell identity: Lessons from development for regenerative medicine. Clinical Epigenetics, 13, 144. https://doi.org/10.1186/s13148-021-01131-4

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bougen-Zhukov, N., Nouri, Y., Godwin, T., Taylor, M., Hakkaart, C., Single, A., Brew, T., Permina, E., Chen, A., Black, M. A., & Guilford, P. (2019). Allosteric AKT inhibitors target synthetic lethal vulnerabilities in E-cadherin-deficient cells. Cancers (Basel), 11, 1359. https://doi.org/10.3390/cancers11091359

    Article  CAS  PubMed  Google Scholar 

  33. Luo, S., Lin, R., Liao, X., Li, D., & Qin, Y. (2021). Identification and verification of the molecular mechanisms and prognostic values of the cadherin gene family in gastric cancer. Science and Reports, 11, 23674. https://doi.org/10.1038/s41598-021-03086-1

    Article  CAS  Google Scholar 

  34. Mita, H., Katoh, H., Komura, D., Kakiuchi, M., Abe, H., Rokutan, H., Yagi, K., Nomura, S., Ushiku, T., Seto, Y., & Ishikawa, S. (2023). Aberrant cadherin11 expression predicts distant metastasis of gastric cancer. Pathology - Research and Practice, 242, 154294. https://doi.org/10.1016/j.prp.2022.154294

    Article  CAS  PubMed  Google Scholar 

  35. Massari, G., Magnoni, F., Favia, G., Peradze, N., Veronesi, P., La Vecchia, C., & Corso, G. (2021). Frequency of CDH1 germline mutations in non-gastric cancers. Cancers, 13, 2321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Corso, G., Corso, F., Bellerba, F., Carneiro, P., Seixas, S., Cioffi, A., La Vecchia, C., Magnoni, F., Bonanni, B., & Veronesi, P. (2021). Geographical distribution of E-cadherin germline mutations in the context of diffuse gastric cancer: A systematic review. Cancers, 13, 1269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Higuchi, K., Inokuchi, M., Takagi, Y., Ishikawa, T., Otsuki, S., Uetake, H., Kojima, K., & Kawano, T. (2017). Cadherin 5 expression correlates with poor survival in human gastric cancer. Journal of clinical pathology, 70, 217–221.

    Article  CAS  PubMed  Google Scholar 

  38. Inokuchi, M., Higuchi, K., Takagi, Y., Tanioka, T., Nakagawa, M., Gokita, K., Okuno, K., & Kojima, K. (2017). Cadherin 5 is a significant risk factor for hematogenous recurrence and a prognostic factor in locally advanced gastric cancer. Anticancer research, 37, 6807–6813.

    CAS  PubMed  Google Scholar 

  39. An, C. H., Je, E. M., Yoo, N. J., & Lee, S. H. (2015). Frameshift mutations of cadherin genes DCHS2, CDH10 and CDH24 genes in gastric and colorectal cancers with high microsatellite instability. Pathology & Oncology Research, 21, 181–185. https://doi.org/10.1007/s12253-014-9804-8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Huan Wang was responsible for performing computational work, preparing figures and/or tables, and either authoring or reviewing article drafts, in addition to approving the final version. Baomin Zhang, on the other hand, was involved in conceiving and designing the experiments, conducting them, analyzing the data, performing computational work, preparing figures and/or tables, and either authoring or reviewing article drafts, as well as approving the final version.

Corresponding author

Correspondence to Baomin Zhang.

Ethics declarations

Ethical Approval

All animal-related experiments were authorized by the Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University Ethics Committee of China’s Faculty of Medicine with animal ethics number: KYDWLL-202327.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 854 KB)

Supplementary file2 (DOCX 2751 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, B. The Impact of Transcriptional Profiling Cadherin Family and Therapeutic Approaches of Gastric Cancer: A Translational Outlook on Multi-omics Data Analysis. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04926-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04926-2

Keywords

Navigation