Skip to main content
Log in

Bis-chalcone Fluorescent Probe for Hydrazine Ratio Sensing in Environment and Organism

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this paper, four novel hydrazine fluorescent probes X1–X4 with bis-chalcone structure were designed and synthesized. Through the measurement of its optical properties, it is found that it can quickly identify hydrazine, high sensitivity, low detection limit, and good anti-interference ability. The recognition of hydrazine by probes X1–X4 is not affected in the pH range of 4–10, X2 has the highest sensitivity, and the detection limit is as low as 0.336 × 10−7 M. Through Gaussian quantization calculation of probe molecules and their reaction products with hydrazine, it is speculated that the recognition mechanism is the closure of intramolecular charge transfer effect. In addition, the cytotoxicity and imaging of HeLa cells were tested, which showed that probes X1–X4 could be used to detect hydrazine in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Boryaev, A. A. (2022). Use of hydrazine and its substitutes as fuel. Chinese Journal of Explosives & Propellants., 45.

  2. Yamada, K., Yasuda, K., Fujiwara, N., Siroma, Z., Tanaka, H., Miyazaki, Y., & Kobayashi, T. (2003). Potential application of anion-exchange membrane for hydrazine fuel cell electrolyte. Electrochemistry communications, 5(10), 892–896.

    Article  CAS  Google Scholar 

  3. Hao, Y., Zhang, Y., Ruan, K., Chen, W., Zhou, B., Tan, X., Wang, Y., Zhao, L., Zhang, G., & Qu, P. (2017). A naphthalimide-based chemodosimetric probe for ratiometric detection of hydrazine. Sensors and Actuators B: Chemical, 244, 417–424.

    Article  CAS  Google Scholar 

  4. Rosca, V., & Koper, M. T. (2008). Electrocatalytic oxidation of hydrazine on platinum electrodes in alkaline solutions. Electrochimica Acta, 53(16), 5199–5205.

    Article  CAS  Google Scholar 

  5. Ma, J., Fan, J., Li, H., Yao, Q., Xia, J., Wang, J., & Peng, X. (2017). Probing hydrazine with a near-infrared fluorescent chemodosimeter. Dyes and Pigments, 138, 39–46.

    Article  CAS  Google Scholar 

  6. Zheng, X.-X., Wang, S.-Q., Wang, H.-Y., Zhang, R.-R., Liu, J.-T., & Zhao, B.-X. (2015). Novel pyrazoline-based selective fluorescent probe for the detection of hydrazine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138, 247–251.

    Article  CAS  PubMed  Google Scholar 

  7. Li, Z., Zhang, W., Liu, C., Yu, M., Zhang, H., Guo, L., & Wei, L. (2017). A colorimetric and ratiometric fluorescent probe for hydrazine and its application in living cells with low dark toxicity. Sensors and Actuators B: Chemical, 241, 665–671.

    Article  CAS  Google Scholar 

  8. Huang, S., Qi, X., Liu, T., Wang, K., Zhang, W., Li, J., & Zhang, Q. (2016). Towards safer rocket fuels: Hypergolic imidazolylidene-borane compounds as replacements for hydrazine derivatives. Chemistry–A European Journal, 22(29), 10187–10193.

    Article  CAS  PubMed  Google Scholar 

  9. Wang, J.-Y., Liu, Z.-R., Ren, M., & Lin, W. (2017). 2-Benzothiazoleacetonitrile based two-photon fluorescent probe for hydrazine and its bio-imaging and environmental applications. Scientific Reports, 7(1), 1530.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Serov, A., & Kwak, C. (2010). Direct hydrazine fuel cells: A review. Applied Catalysis B: Environmental, 98(1-2), 1–9.

    Article  CAS  Google Scholar 

  11. Yin, W. X., Li, Z. P., Zhu, J. K., & Qin, H. Y. (2008). Effects of NaOH addition on performance of the direct hydrazine fuel cell. Journal of power sources, 182(2), 520–523.

    Article  CAS  Google Scholar 

  12. Shi, X., Yin, C., Zhang, Y., Wen, Y., & Huo, F. (2019). A novel ratiometric and colorimetric fluorescent probe for hydrazine based on ring-opening reaction and its applications. Sensors and Actuators B: Chemical, 285, 368–374.

    Article  CAS  Google Scholar 

  13. Sinha, B. K., & Mason, R. P. (2014). Biotransformation of hydrazine dervatives in the mechanism of toxicity. Journal of drug metabolism & toxicology, 5(3).

  14. Xue, L., Wu, L., Li, Y., Yang, Q., Sun, D., Zhang, H., Xu, H., & Li, Y. (2022). A novel fluorescent probe with aggregation induced emission (AIE) effect based on 1, 4-dihydropyridine and its applications. Luminescence, 37(1), 177–185.

    Article  CAS  PubMed  Google Scholar 

  15. Samanta, S. K., Maiti, K., Ali, S. S., Guria, U. N., Ghosh, A., Datta, P., & Mahapatra, A. K. (2020). A solvent directed D-π-A fluorescent chemodosimeter for selective detection of hazardous hydrazine in real water sample and living cell. Dyes and Pigments, 173, 107997.

    Article  CAS  Google Scholar 

  16. Wang, M., Wang, X., Li, X., Yang, Z., Guo, Z., Zhang, J., Ma, J., & Wei, C. (2020). A coumarin-fused ‘off-on’ fluorescent probe for highly selective detection of hydrazine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 230, 118075.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, X.-Y., Yang, Y.-S., Wang, W., Jiao, Q.-C., & Zhu, H.-L. (2020). Fluorescent sensors for the detection of hydrazine in environmental and biological systems: Recent advances and future prospects. Coordination Chemistry Reviews, 417, 213367.

    Article  CAS  Google Scholar 

  18. Vernot, E., MacEwen, J., Bruner, R., Haun, C., Kinkead, E., Prentice, D., Hall, A., III, Schmidt, R., Eason, R., & Hubbard, G. (1985). Long-term inhalation toxicity of hydrazine. Fundamental and Applied Toxicology, 5(6), 1050–1064.

    Article  CAS  PubMed  Google Scholar 

  19. Goswami, S., Das, S., Aich, K., Pakhira, B., Panja, S., Mukherjee, S. K., & Sarkar, S. (2013). A chemodosimeter for the ratiometric detection of hydrazine based on return of ESIPT and its application in live-cell imaging. Organic letters, 15(21), 5412–5415.

    Article  CAS  PubMed  Google Scholar 

  20. Garrod, S., Bollard, M. E., Nicholls, A. W., Connor, S. C., Connelly, J., Nicholson, J. K., & Holmes, E. (2005). Integrated metabonomic analysis of the multiorgan effects of hydrazine toxicity in the rat. Chemical research in toxicology, 18(2), 115–122.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao, Z., Xing, L., Feng, Q., & Han, L. (2022). A novel colorimetric fluorescent probe for detecting hydrazine in living cells and zebrafish. Luminescence, 37(6), 995–1000.

    Article  CAS  PubMed  Google Scholar 

  22. Reja, S. I., Gupta, N., Bhalla, V., Kaur, D., Arora, S., & Kumar, M. (2016). A charge transfer based ratiometric fluorescent probe for detection of hydrazine in aqueous medium and living cells. Sensors and Actuators B: Chemical, 222, 923–929.

    Article  CAS  Google Scholar 

  23. Liu, W., Jia, H., Zhang, J., Shao, L., Wang, J., & Fang, D. (2021). A novel dual-excitation and dual-emission fluorescent probe CDs–COO–F for hydrazine detection in aqueous solutions and living cells. Dyes and Pigments, 184, 108831.

    Article  CAS  Google Scholar 

  24. Nabeel, F., & Rasheed, T. (2020). Rhodol-conjugated polymersome sensor for visual and highly-sensitive detection of hydrazine in aqueous media. Journal of hazardous materials, 388, 121757.

    Article  CAS  PubMed  Google Scholar 

  25. Farooq, S., & Ngaini, Z. (2019). Recent synthetic methodologies for chalcone synthesis (2013-2018). Current Organocatalysis, 6(3), 184–192.

    Article  CAS  Google Scholar 

  26. Mahapatra, D. K., Bharti, S. K., & Asati, V. (2015). Anti-cancer chalcones: Structural and molecular target perspectives. European journal of medicinal chemistry, 98, 69–114.

    Article  CAS  PubMed  Google Scholar 

  27. Mahapatra, D., Asati, V., & Bharti, S. K. (2019). Recent therapeutic progress of chalcone scaffold bearing compounds as prospective anti-gout candidates. J. Crit. Rev, 6(1), 1–5.

    Article  Google Scholar 

  28. Gao, F., Wang, Q., Gao, N., Yang, Y., Cai, F., Yamane, M., Gao, F., & Tanaka, H. (2017). Hydroxyapatite/chemically reduced graphene oxide composite: Environment-friendly synthesis and high-performance electrochemical sensing for hydrazine. Biosensors and Bioelectronics, 97, 238–245.

    Article  CAS  PubMed  Google Scholar 

  29. Smolenkov, A. D., & Shpigun, O. A. (2012). Direct liquid chromatographic determination of hydrazines: A review. Talanta, 102, 93–100.

    Article  CAS  PubMed  Google Scholar 

  30. Park, S., Suh, B., & Kim, C. (2022). A chalcone-based fluorescent chemosensor for detecting Mg2+ and Cd2+. Luminescence, 37(2), 332–339.

    Article  CAS  PubMed  Google Scholar 

  31. Asiri, A. M., Al-Amari, M. M., & Khan, S. A. (2020). Synthesis of nitrogen containing chalcone: A highly sensitive and selective fluorescent chemosensor for the Fe3+ metal ion in aqueous media. Journal of Fluorescence, 30, 969–974.

    Article  CAS  PubMed  Google Scholar 

  32. Tang, X.-Y., & Shi, M. (2008). Vilsmeier–Haack reaction of 1-cyclopropyl-2-arylethanones. The Journal of organic chemistry, 73(21), 8317–8320.

    Article  CAS  PubMed  Google Scholar 

  33. Su, W., Weng, Y., Jiang, L., Yang, Y., Zhao, L., Chen, Z., Li, Z., & Li, J. (2010). Recent progress in the use of Vilsmeier-type reagents. Organic Preparations and Procedures International, 42(6), 503–555.

    Article  CAS  Google Scholar 

  34. Bandgar, B. P., Gawande, S. S., Bodade, R. G., Totre, J. V., & Khobragade, C. N. (2010). Synthesis and biological evaluation of simple methoxylated chalcones as anticancer, anti-inflammatory and antioxidant agents. Bioorganic & medicinal chemistry, 18(3), 1364–1370.

    Article  CAS  Google Scholar 

  35. Hsieh, C.-T., Hsieh, T.-J., El-Shazly, M., Chuang, D.-W., Tsai, Y.-H., Yen, C.-T., Wu, S.-F., Wu, Y.-C., & Chang, F.-R. (2012). Synthesis of chalcone derivatives as potential anti-diabetic agents. Bioorganic & medicinal chemistry letters, 22(12), 3912–3915.

    Article  CAS  Google Scholar 

  36. Elfi Susanti, V., Agustina, W., & Setyowati, E. (2017). A green synthesis of chalcones as an antioxidant and anticancer. International Conference on Chemistry and Material Science (IC2MS), 299, 012077.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

F-NW and Y-NL performed the experiments; Y-SY and Y-PZ performed the data analysis; Y-SY and F-NW wrote the paper with support from Y-PZ; J-JX contributed to the theoretical analysis. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Yun-Shang Yang or Ying-Peng Zhang.

Ethics declarations

Ethical Approval

This declaration is not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1289 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YS., Wang, FN., Zhang, YP. et al. Bis-chalcone Fluorescent Probe for Hydrazine Ratio Sensing in Environment and Organism. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04785-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04785-3

Keywords

Navigation