Skip to main content
Log in

Effects of Graphene-Based Metal Composite and Urea on Seed Germination and Performance of Berberis chitria Buch.-Ham. ex Lindl.

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Being an important source of berberine, Berberis chitria Buch.-Ham. ex Lindl. (Berberidaceae) has high demand in pharmaceutical industries. Its populations are diminishing due to overexploitation, habitat loss, slow-growing nature, and climate change. It is important to develop propagation protocols to sustain its natural populations and ensure its survival in the future. Fertilizers play an essential role in the yield and productivity of different crops. Among others, urea is the most abundantly used fertilizer in crops. Its effects on the yield and survival of medicinal plants are poorly studied. However, it is known that applying urea for a long time affects the soil negatively. Due to these negative effects, alternative fertilizers such as graphene-based metal composite (GMC) are being tested for their efficiency. In the present study, for the first time, we tested the effects of urea and GMC on the germination and performance of B. chitria. GMC showed maximum germination at 30 ppm (75%) and urea at 15 ppm (79%). Findings reveal non-significant effects of GMC and urea on germination and performance of B. chitria, suggesting the use of GMC as an alternative fertilizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All the data generated or analyzed during this study are included in the form of figures in this article and could be available from the corresponding author upon reasonable request.

References

  1. Begum, P., Ikhtiari, R., & Fugetsu, B. (2011). Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon, 49(12), 3907–3919. https://doi.org/10.1016/j.carbon.2011.05.029

    Article  CAS  Google Scholar 

  2. Bremner, J. M., & Krogmeier, M. J. (1989). Evidence that the adverse effect of urea fertilizer on seed germination in soil is due to ammonia formed through hydrolysis of urea by soil urease. Proceedings of the National academy of Sciences of the United States of America, 86(21), 8185–8188. https://doi.org/10.1073/pnas.86.21.8185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen, J., Yang, L., Li, S., & Ding, W. (2018). Various physiological response to graphene oxide and amine-functionalized graphene oxide in wheat (Triticum aestivum). Molecules, 23, 1104. https://doi.org/10.3390/molecules23051104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chung, H., Kim, M. J., Ko, K., Kim, J. H., Kwon, H. A., Hong, I., Park, N., Lee, S. W., & Kim, W. (2015). Effects of graphene oxides on soil enzyme activity and microbial biomass. Science of the Total Environment, 514, 307–313. https://doi.org/10.1016/j.scitotenv.2015.01.077

    Article  CAS  PubMed  Google Scholar 

  5. Clark, C. M., Cleland, E. E., Collins, S. L., Fargione, J. E., Gough, L., Gross, K. L., Pennings, S. C., Suding, K. N., & Grace, J. B. (2007). Environmental and plant community determinants of species loss following nitrogen enrichment. Ecology Letters, 10, 596–607. https://doi.org/10.1111/j.1461-0248.2007.01053.x

    Article  PubMed  Google Scholar 

  6. Cleland, E. E., & Harpole, W. S. (2010). Nitrogen enrichment and plant communities. Annals of the New York Academy of Sciences, 1195, 46–61. https://doi.org/10.1111/j.1749-6632.2010.05458.x

    Article  CAS  PubMed  Google Scholar 

  7. Elmer, W. H., & White, J. C. (2016). The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environmental Science.: Nano, 3, 1072–1079. https://doi.org/10.1039/C6EN00146G

    Article  CAS  Google Scholar 

  8. Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., & Geim, A. K. (2006). Raman spectrum of graphene and graphene layers. Physical Review Letters, 97(18), 187401. https://doi.org/10.1103/PhysRevLett.97.187401

    Article  CAS  PubMed  Google Scholar 

  9. Guo, X., Zhao, J., Wang, R., Zhang, H., Xing, B., Naeem, M., Yao, T., Li, R., Xu, R., Zhang, Z., & Wu, J. (2021). Effects of graphene oxide on tomato growth in different stages. Plant Physiology and Biochemistry, 162, 447–455. https://doi.org/10.1016/j.plaphy.2021.03.013

    Article  CAS  PubMed  Google Scholar 

  10. He, Y., Hu, R., Zhong, Y., Zhao, X., Chen, Q., & Zhu, H. (2018). Graphene oxide as a water transporter promoting germination of plants in soil. Nano Research, 11, 1928–1937. https://doi.org/10.1007/s12274-017-1810-1

    Article  CAS  Google Scholar 

  11. Imtiaz, M., Rashid, A., Khan, P., Memon, M. Y., & Aslam, M. (2010). The role of micronutrients in crop production and human health. Pakistan Journal of Botany, 42(4), 2565–2578.

    CAS  Google Scholar 

  12. Jiao, J., Cheng, F., Zhang, X., Xie, L., Li, Z., Yuan, C., & Zhang, L. (2016). Preparation of graphene oxide and its mechanism in promoting tomato roots growth. Journal of Nanoscience and Nanotechnology, 16(4), 4216–4223. https://doi.org/10.1166/jnn.2016.12601

    Article  CAS  PubMed  Google Scholar 

  13. Karakoti, M., Pandey, S., Jangra, R., Dhapola, P. S., Singh, P. K., Mahendia, S., Abbas, A., & Sahoo, N. G. (2021). Waste plastics derived graphene nanosheets for supercapacitor application. Materials and Manufacturing Processes, 36(2), 171–177. https://doi.org/10.1080/10426914.2020.1832680

    Article  CAS  Google Scholar 

  14. Karakoti, M., Pandey, S., Tatrari, G., Dhapola, P. S., Jangra, R., Dhali, S., Pathak, M., Mahendia, S., & Sahoo, N. G. (2022). A waste to energy approach for the effective conversion of solid waste plastics into graphene nanosheets using different catalysts for high performance supercapacitors: A comparative study. Materials Advances, 3(4), 2146–2157. https://doi.org/10.1039/2633-5409/2020

    Article  CAS  Google Scholar 

  15. Li, F., Sun, C., Li, X., Yu, X., Luo, C., Shen, Y., & Qu, S. (2018). The effect of graphene oxide on adventitious root formation and growth in apple. Plant Physiology and Biochemistry, 129, 122–129. https://doi.org/10.1016/j.plaphy.2018.05.029

    Article  CAS  PubMed  Google Scholar 

  16. Molur, S., Walker, S. (1998). Report of the Workshop “Conservation Assessment and Management Plan for selected medicinal plant species of northern, northeastern and central India”(BCPP-Endangered Species Project), Zoo Outreach Organisation and Conservation Breeding Specialist Group India Coimbatore India 62pp.

  17. Mousavi, S. R., Galavi, M., & Ahmadvand, G. (2007). Effect of zinc and manganese foliar application on yield, quality and enrichment on potato (Solanum tuberosum L.). Asian Journal of Plant Sciences, 6(8), 1256–1260. https://doi.org/10.3923/ajps.2007.1256.1260

    Article  CAS  Google Scholar 

  18. Mousavi, S. R., Galavi, M., Rezaei, M. (2013). Zinc (Zn) importance for crop production—A review. International Journal of Agronomy and Plant Production. 4(1):64–68. http://www.ijappjournal.com

  19. Mukherjee, A., Majumdar, S., Servin, A. D., Pagano, L., Dhankher, O. P., & White, J. C. (2016). Carbon nanomaterials in agriculture: A critical review. Frontiers in Plant Science, 7(172), 172. https://doi.org/10.3389/fpls.2016.00172

    Article  PubMed  PubMed Central  Google Scholar 

  20. Neag, M., Mocan, A., Echeverría, J., Pop, R. M., Bocsan, C. I., Crişan, G., & Buzoianu, A. D. (2018). Berberine: Botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Frontiers in Pharmacology, 9, 557. https://doi.org/10.3389/fphar.2018.00557

    Article  PubMed  PubMed Central  Google Scholar 

  21. N R Council. (2009). Nutrient control actions for improving water quality in the Mississippi River Basin and Northern Gulf of Mexico. National Academies Press.

    Google Scholar 

  22. N R Council. (2012). Improving water quality in the Mississippi river basin and northern Gulf of Mexico: Strategies and priorities. National Academies Press.

    Google Scholar 

  23. Ni, Z., Wang, Y., Yu, T., & Shen, Z. (2008). Raman spectroscopy and imaging of graphene. Nano Research, 1(4), 273–291. https://doi.org/10.1007/s12274-008-8036-1

    Article  CAS  Google Scholar 

  24. Pandey, A., Brijwal, L., & Tamta, S. (2013). In vitro propagation and phytochemical assessment of Berberis chitria: An important medicinal shrub of Kumaun Himalaya, India. Journal of Medicinal Plant Research, 7(15), 930–937. https://doi.org/10.5897/JMPR13.4435

    Article  CAS  Google Scholar 

  25. Pandey, K., Anas, M., Hicks, V., Green, M., & Khodakovskaya, M. (2019). Improvement of commercially valuable traits of industrial crops by application of carbon-based nanomaterials. Science and Reports, 9, 19358. https://doi.org/10.1038/s41598-019-55903-3

    Article  CAS  Google Scholar 

  26. Pandey, S., Karakoti, M., Dhali, S., Karki, N., SanthiBhushan, B., Tewari, C., Rana, S., Srivastava, A., Melkani, A. B., & Sahoo, N. G. (2019). Bulk synthesis of graphene nanosheets from plastic waste: An invincible method of solid waste management for better tomorrow. Waste Management, 88, 48–55. https://doi.org/10.1016/j.wasman.2019.03.023

    Article  CAS  PubMed  Google Scholar 

  27. Pandorf, M., Pourzahedi, L., Gilbertson, L., Lowry, G. V., Herckes, P., & Westerhoff, P. (2020). Graphite nanoparticle addition to fertilizers reduces nitrate leaching in growth of lettuce (Lactuca sativa). Environmental Science.: Nano, 7(1), 127–138. https://doi.org/10.1039/2051-8161/2014

    Article  CAS  Google Scholar 

  28. Pati, S., Chatterji, A., & Dash, B. P. (2018). Chitosan from the carapace of Indian horseshoe crab (Tachypleus gigas, müller): Isolation and its characterization. Advances in Bioresearch, 9(4), 52–64. https://doi.org/10.15515/abr.0976-4585.9.4.5264

    Article  CAS  Google Scholar 

  29. Pati, S., Jena, P., Shahimi, S., Nelson, B. R., Acharya, D., Dash, B. P., & Chatterji, A. (2020). Characterization dataset for pre-and post-irradiated shrimp waste chitosan. Data in Brief, 1(32), 106081. https://doi.org/10.1016/j.dib.2020.106081

    Article  Google Scholar 

  30. Pati, S., Chatterji, A., Dash, B. P., Raveen Nelson, B., Sarkar, T., Shahimi, S., Atan Edinur, H., Binti Abd Manan, T. S., Jena, P., Mohanta, Y. K., & Acharya, D. (2020). Structural characterization and antioxidant potential of chitosan by γ-irradiation from the carapace of horseshoe crab. Polymers, 12(10), 2361. https://doi.org/10.3390/polym12102361. 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pradhan, S., Patra, P., Das, S., Chandra, S., Mitra, S., Dey, K. K., Akbar, S., Palit, P., & Goswami, A. (2013). Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: A detailed molecular, biochemical, and biophysical study. Environmental Science and Technology, 47(22), 13122–13131. https://doi.org/10.1021/es402659t

    Article  CAS  PubMed  Google Scholar 

  32. Redondo-Gómez, S., Naranjo, E. M., Garzón, O., Castillo, J. M., Luque, T., & Figueroa, M. E. (2008). Effects of salinity on germination and seedling establishment of endangered Limonium emarginatum (Willd.) O. Kuntze. Journal of Coastal Research, 24(10024), 201–205. https://doi.org/10.1093/aob/mcn069

    Article  Google Scholar 

  33. Ren, W., Ren, G., Teng, Y., Li, Z., & Li, L. (2015). Time-dependent effect of graphene on the structure, abundance, and function of the soil bacterial community. Journal of Hazardous Materials, 297, 286–294. https://doi.org/10.1016/j.jhazmat.2015.05.017

    Article  CAS  PubMed  Google Scholar 

  34. Sahoo, N., Tatrari, G., Tewari, C., Karakoti, M., Bohra, B. S., & Danadapat, A. (2022). Vanadium pentaoxide-doped waste plastic-derived graphene nanocomposite for supercapacitors: A comparative electrochemical study of low and high metal oxide doping. RSC Advances, 12(9), 5118–5134. https://doi.org/10.1039/2046-2069/2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Singh, A., Singh, N. Á., Afzal, S., Singh, T., & Hussain, I. (2018). Zinc oxide nanoparticles: A review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. Journal of Materials Science, 53(1), 185–201. https://doi.org/10.1007/s10853-017-1544-1

    Article  CAS  Google Scholar 

  36. Tatrari, G., Tewari, C., Karakoti, M., Pathak, M., Jangra, R., Santhibhushan, B., Mahendia, S., & Sahoo, N. G. (2021). Mass production of metal-doped graphene from the agriculture waste of Quercus ilex leaves for supercapacitors: Inclusive DFT study. RSC Advances, 11(18), 10891–10901. https://doi.org/10.1039/2046-2069/2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tatrari, G., Tewari, C., Bohra, B. S., Pandey, S., Karakoti, M., Kumar, S., Tiwari, H., Dhali, S., & Sahoo, N. G. (2021). Waste plastic derived graphene sheets as nanofillers to enhance mechanical strength of concrete mixture: An inventive approach to deal with universal plastic waste. Cleaner Engineering and Technology, 5, 100275. https://doi.org/10.1016/j.clet.2021.100275

    Article  Google Scholar 

  38. Tatrari, G., Tewari, C., Pathak, M., Karakoti, M., Bohra, B. S., Pandey, S., SanthiBhushan, B., Srivastava, A., Rana, S., & Sahoo, N. G. (2022). Bulk production of zinc doped reduced graphene oxide from tire waste for supercapacitor application: Computation and experimental analysis. J Energy Storage, 53, 05098. https://doi.org/10.1016/j.est.2022.105098

    Article  Google Scholar 

  39. Tatrari, G., Tewari, C., Pathak, M., Bhatt, D., Karakoti, M., Pandey, S., Uniyal, D. S., Shah, F. U., & Sahoo, N. G. (2023). 3D-graphene hydrogel and tungsten trioxide-MnO2 composite for ultra-high-capacity asymmetric supercapacitors: A comparative study. Journal of Energy Storage, 68, 107830. https://doi.org/10.1016/j.est.2023.107830

    Article  Google Scholar 

  40. Tiwari, U., Adhikari, B., & Rawat, G. (2012). A checklist of berberidaceae in Uttarakhand, Western Himalaya, India. Check List, 8(4), 610–616.

    Article  Google Scholar 

  41. Treseder, K. K. (2008). Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies. Ecology Letters, 11(10), 1111–1120. https://doi.org/10.1111/j.1461-0248.2008.01230.x

    Article  PubMed  Google Scholar 

  42. Tripathi, V., Goswami, S., Pushpangadan, P. (2010). Isolation and expression analysis of Berberis chitria Lidl. specific transcripts using subtractive hybridization technique. African Journal of Plant Science. 4(12):488–495. http://www.academicjournals.org/ajps

  43. Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H., & Tilman, D. G. (1997). Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications, 7, 737–750. https://doi.org/10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2

    Article  Google Scholar 

  44. Wyss, K. M., Beckham, J. L., Chen, W., Luong, D. X., Hundi, P., Raghuraman, S., Shahsavari, R., & Tour, J. M. (2021). Converting plastic waste pyrolysis ash into flash graphene. Carbon, 174, 430–438. https://doi.org/10.1016/j.carbon.2020.12.063

    Article  CAS  Google Scholar 

  45. Yang, Y., Liu, Y. X., Li, Y., Deng, B. W., Yin, B., & Yang, M. B. (2020). Design of compressible and elastic N-doped porous carbon nanofiber aerogels as binder-free supercapacitor electrodes. Journal of Materials Chemistry, 8(33), 17257–17265. https://doi.org/10.1039/D0TA05423B

    Article  CAS  Google Scholar 

  46. Zhang, M., Gao, B., Chen, J., & Li, Y. (2015). Effects of graphene on seed germination and seedling growth. Journal of Nanoparticle Research, 17, 78. https://doi.org/10.1007/s11051-015-2885-9

    Article  CAS  Google Scholar 

  47. Zhang, T. A., Chen, H. Y., & Ruan, H. (2018). Global negative effects of nitrogen deposition on soil microbes. ISME Journal, 12(7), 1817–1825. https://doi.org/10.1038/s41396-018-0096-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. Nanda Gopal Sahoo, PRS-NSNT Centre, Department of Chemistry, Kumaun University Nainital and the head of the Department of Botany, D.S.B. Campus, Kumaun University, Nainital, India for providing the necessary facilities to complete this work. We are thankful to the anonymous reviewers and concerned editor for valuable comments and suggestions on the previous version of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to study conception and design. Material preparation, data collection, and analysis were performed by Sheetal Oli and Gaurav Tatrari. The first draft of the manuscript was written by Sheetal Oli and Gaurav Tatrari. The manuscript was reviewed and edited by Harsh Kumar Chauhan, Anil Bisht and I.D. Bhatt. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Anil Kumar Bisht.

Ethics declarations

Ethical Approval

The study involves experimental work on a plant species. No ethical approval is required.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oli, S., Tatrari, G., Chauhan, H.K. et al. Effects of Graphene-Based Metal Composite and Urea on Seed Germination and Performance of Berberis chitria Buch.-Ham. ex Lindl.. Appl Biochem Biotechnol 196, 2219–2232 (2024). https://doi.org/10.1007/s12010-023-04624-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04624-5

Keywords

Navigation