Skip to main content
Log in

Role of mi RNA in Phytoremediation of Heavy Metals and Metal Induced Stress Alleviation

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Anthropogenic activities have contributed hugely in enhancing various types of environmental toxicity. One of these is higher accumulation of toxic heavy metals in soil and plant tissues. Although many heavy metals act as essential component for the growth and development of plants when present in low concentrations but at higher concentrations it becomes cytotoxic. Several innate mechanisms have evolved in plants to cope with it. In recent years the mechanism of using miRNA to combat metal induced toxicity has come to fore front. The miRNA or the microRNA regulates different physiological processes and induces a negative control in expressing the complementary target genes. The cleavage formation by post-transcriptional method and the inhibition of targeted translational mRNA are the two main procedures by which plant miRNAs function. The heavy and enhanced metal accumulation in plants has increased the production of different kinds of free radicals like reactive nitrogen and oxygen which damage the plants oxidatively. Several plant miRNA are capable of targeting and reducing the expression of those genes which are responsible for higher metal accumulation and storage. This can reduce the metal load and hence its negative impact on plant can also be reduced. This review depicts the biogenesis, the mode of action of miRNA, and the control mechanisms of miRNA in metal induced stress response in plant. A detailed review on the role of plant miRNA in alleviation of metal induced stress is discussed in this present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Sanz-Carbonell, A., Marques, M. C., Bustamante, A., Fares, M. A., Rodrigo, G., & Gomez, G. (2019). Inferring the regulatory network of the miRNA-mediated response to biotic and abiotic stress in melon. BMC Plant Biology, 19, 78.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Srivastava, S., & Suprasanna, P. (2021). MicroRNAs: Tiny, powerful players of metal stress responses in plants. Plant Physiology and Biochemistry, 166, 928–938.

    Article  CAS  PubMed  Google Scholar 

  3. DalCorso, G., Farinati, S., & Furini, S. (2010). Regulatory networks of cadmium stress in plants. Plant Signaling & Behavior, 5(6), 663–667.

    Article  CAS  Google Scholar 

  4. Patra, M., Bhowmik, N., Bandopadhyay, B., & Sharma, A. (2004). Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmental and Experimental Botany, 52(3), 199–223.

    Article  CAS  Google Scholar 

  5. Yruela, I. (2009). Copper in plants: Acquisition, transport and interactions. Functional Plant Biology, 36(5), 409–430.

    Article  CAS  PubMed  Google Scholar 

  6. Hall, J. L. (2011). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53, 1–11.

    Article  Google Scholar 

  7. Seth, C. S., Remans, T., Keunen, E., Jozefczak, M., Gielen, H., Opdenakker, K., Weyens, N., Vangronsveld, J., & Cuypers, A. (2012). Phytoextraction of toxic metals: A central role for glutathione. Plant, Cell & Environment, 35, 334–346.

    Article  CAS  Google Scholar 

  8. Smeets, K., Opdenakker, K., Remans, T., van Sanden, S., van Belleghem, F., Semane, B., Horemans, N., Guisez, Y., Vangronsveld, J., & Cuypers, A. (2009). Oxidative stress-related responses at transcriptional and enzymatic levels after exposure to cd or Cu in a multipollution context. Journal of Plant Physiology, 166, 1982–1992.

    Article  CAS  PubMed  Google Scholar 

  9. Cuypers, A., Smeets, K., Ruytinx, J., Opdenakker, K., Keunen, E., Remans, T., Horemans, N., Vanhoudt, N., van Sanden, S., van Belleghem, F., et al. (2011). The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. Journal of Plant Physiology, 168, 309–316.

    Article  CAS  PubMed  Google Scholar 

  10. Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58(2), 221–227.

    Article  CAS  PubMed  Google Scholar 

  11. Drazkiewicz, M., Skórzynska-Polit, E., & Krupa, Z. (2011). Effect of BSO-supplemented heavy metals on antioxidant enzymes in Arabidopsis thaliana. Ecotoxicology and Environmental Safety, 73, 1362–1369.

    Article  Google Scholar 

  12. Liu, Y., Teng, C., Xia, R., & Meyers, B. C. (2020). PhasiRNAs in plants: Their biogenesis, genic sources, and roles in stress responses, development, and reproduction. The Plant Cell, 32, 3059–3080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khraiwesh, B., Zhu, J. K., & Zhu, J. (2012). Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica Et Biophysica Acta, 1819(2), 137–148.

    Article  CAS  PubMed  Google Scholar 

  14. Jamalkandi, S. A., & Masoudi-Nejad, A. (2009). Reconstruction of Arabidopsis thaliana fully integrated small RNA pathway. Functional and Integrative Genomics, 9, 419–432.

    Article  CAS  PubMed  Google Scholar 

  15. Sunkar, R., Kapoor, A., & Zhu, J. K. (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down regulation of miR398 and important for oxidative stress tolerance. The Plant Cell, 18(8), 2051–2065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Park, M. Y., Wu, G., Gonzalez-Sulser, A., Vaucheret, H., & Poethig, R. S. (2012). Nuclear processing and export of microRNAs in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 102, 3691–3696.

    Article  Google Scholar 

  17. Vaucheret, H., Vazquez, F., Crété, P., & Bartel, D. P. (2004). The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes & Development, 18, 1187–1197.

    Article  CAS  Google Scholar 

  18. Rhoades, M. W., Reinhart, B. J., Lim, L. P., Burge, C. B., Bartel, B., & Bartel, D. P. (2002). Prediction of plant microRNA targets. Cell, 110(4), 513–20.

  19. Mallory-Smith, C., & Zapiola, M. (2008). Gene flow from glyphosate-resistant crops. Pest Management Science, 64(4), 428–440.

    Article  CAS  PubMed  Google Scholar 

  20. Vazquez, F., Blevins, T., Ailhas, J., Boller, T., & Meins, F., Jr. (2008). Evolution of Arabidopsis MIR genes generates novel microRNA classes. Nucleic Acids Research, 36, 6429–6438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chellappan, P., Xia, J., Zhou, X., Gao, S., Zhang, X., Coutino, G., Vazquez, F., Zhang, W., & Jin, H. (2010). siRNAs from miRNA sites mediate DNA methylation of target genes. Nucleic Acids Research, 38, 6883–6894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matzke, M., Kanno, T., Daxinger, L., Huettel, B., & Matzke, A. J. (2009). RNA-mediated chromatin-based silencing in plants. Current Opinion in Cell Biology, 21, 367–376. https://doi.org/10.1016/j.ceb.2009.01.025

    Article  CAS  PubMed  Google Scholar 

  23. Bao, N., Lye, K. W., & Barton, M. K. (2004). MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Developmental Cell, 7, 653–662.

    Article  CAS  PubMed  Google Scholar 

  24. Boyko, A., & Kovalchuk, I. (2008). Epigenetic control of plant stress response. Environmental and Molecular Mutagenesis, 49, 61–72.

    Article  CAS  PubMed  Google Scholar 

  25. Luo, M., Liu, X., Singh, P., Cui, Y., Zimmerli, L., & Wu, K. (2012). Chromatin modifications and remodeling in plant abiotic stress responses. Biochimica et Biophysica Acta, 1819, 129–136.

  26. Cao, D., Gao, X., Liu, J., Wang, X., Geng, S., Yang, C., Liu, B., & Shi, D. (2012). Root-specific DNA methylation in Chloris virgata, a natural alkaline-resistant halophyte, in response to salt and alkaline stresses. Plant Molecular Biology Reporter, 30, 1102–1109.

    Article  CAS  Google Scholar 

  27. Kuhlmann, M., & Mette, M. F. (2012). Developmentally non-redundant SET domain proteins SUVH2 and SUVH9 are required for transcriptional gene silencing in Arabidopsis thaliana. Plant Molecular Biology, 79, 623–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiang, H., & Kohler, C. (2012). Evolution, function and regulation of genomic imprinting in plant seed development. Journal of Experimental Botany, 63, 4713–4722.

    Article  CAS  PubMed  Google Scholar 

  29. Berr, A., Shafiq, S., & Shen, W. H. (2011). Histone modifications in transcriptional activation during plant development. BBA Gene Regulatory Mechanisms, 1809, 567–576.

    CAS  PubMed  Google Scholar 

  30. Wu, G., & Poethig, R. S. (2006). Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development, 133, 3539–3547.

    Article  CAS  PubMed  Google Scholar 

  31. Lauter, N., Kampani, A., Carlson, S., Goebel, M., & Moose, S. P. (2005). microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proceedings of the National Academy of Sciences of the United States of America, 102, 9412–9417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kawashima, C. G., Yoshimoto, M., Maruyama-Nakashita, A., Tsuchiya, Y. N., Saito, K., Takahashi, H., & Dalmay, T. (2009). Sulphur starvation induces the expression of microRNA-395 and one of its targets genes but in different cell types. The Plant Journal, 57, 313–321.

    Article  CAS  PubMed  Google Scholar 

  33. Allen, E., Xie, Z., Gustafson, A. M., & Carrington, J. C. (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 121, 207–221.

    Article  CAS  PubMed  Google Scholar 

  34. Liang, G., Yang, F., & Yu, D. (2007). microRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. The Plant Journal, 62, 1046–1057.

    Google Scholar 

  35. Fujii, H., Chiou, T. J., Lin, S. I., Aung, K., & Zhu, J. K. (2005). A miRNA involved in phosphate starvation response in Arabidopsis. Current Biology, 15, 2038–2043.

    Article  CAS  PubMed  Google Scholar 

  36. Chiou, T. J., Aung, K., Lin, S. I., Wu, C. C., Chiang, S. F., & Su, C. I. (2006). Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell, 18, 412–421. 

  37. Zhou, Z. S., Zeng, H. Q., Liu, Z. P., & Yang, Z. M (2012). Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal. Plant, Cell and Environment, 35, 86–99.

  38. Dubey, S., Saxena, S., Chauhan, A. S., Mathur, P., Rani, V., & Chakrabaroty, D. (2020). Identification and expression analysis of conserved microRNAs during short and prolonged chromium stress in rice (Oryza sativa). Environmental Science and Pollution Research, 27, 380–390.

    Article  CAS  PubMed  Google Scholar 

  39. Huang, S. Q., Xiang, A. L., Che, L. L., Chen, S., Li, H., Song, J. B., & Yang, Z. M. (2011). A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress. Plant Biotechnology Journal, 8, 887–899.

    Article  Google Scholar 

  40. Zhou, Z. S., Song, J. B., & Yang, Z. M. (2012). Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium. Journal of Experimental Botany, 63, 4597–4613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lima, J. C., Arenhart, R. A., Margis-Pinheiro, M., & Margis, R. (2011). Aluminum triggers broad changes in microRNA expression in rice roots. Genetics and Molecular Research, 10, 2817–2832.

    Article  CAS  PubMed  Google Scholar 

  42. Ding, Y., Chen, Z., & Zhu, C. (2011). Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). Journal of Experimental Botany, 62, 3563–3573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou, M., Zheng, S., Liu, R., Lu, L., Zhang, C., Zhang, L., Yant, L., & Wu, Y. (2019). The genome-wide impact of cadmium on microRNA and mRNA expression in contrasting cd responsive wheat genotypes. BMC Genomics, 20, 615.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Carrasco-Gil, L., Álvarez-Fernández, A., Sobrino-Plata, J., Milán, R., Carpena-Ruiz, R. O., Leduc, D. L., Andrews, J. C., Abadía, J., & Hernández, L. E. (2011)complexation of hg with phytochelatins is important for plant hg tolerance. Plant, Cell & Environment, 34, 778–791.

  45. Cobbett, C., & Goldsbrough, P. (2002). Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 53, 159–182.

  46. Howden, R., Goldsbrough, P. B., Anderson, C. R., & Cobbett, C. S. (1995). Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiology, 107, 1059–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yamasaki, H., Abdel-Ghany, S. E., Bohu, C. M., Kobayashi, Y., Shikanai, T., & Pilon, M. (2007). Regulation of copper homeostasis but micro-RNA in Arabidopsis. Journal of Biological Chemistry, 282, 16369–16378.

    Article  CAS  PubMed  Google Scholar 

  48. Abdel-Ghany, S. E., & Pilon, M. (2008). MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. Journal of Biological Chemistry, 283, 15932–11594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Opdenakker, K., Remans, T., Keunen, E., Vangronsveld, J., & Cuypers, A. (2012). Exposure of Arabidopsis thaliana to Cd or Cu excess leads to oxidative stress mediated alterations in MAPKinase transcript levels. Environmental and Experimental Botany, 83, 53–61.

    Article  CAS  Google Scholar 

  50. Chen, M., Meng, Y., Mao, C., Chen, D., & Wu, P. (2011). Methodological framework for functional characterization of plant microRNAs. Journal of Experimental Botany, 61, 2271–2280.

    Article  Google Scholar 

  51. Sandmann, G., & Böger, P. (1980). Copper-mediated lipid peroxidation processes in photosynthetic membranes. Plant Physiology, 66, 797–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Maksymiec, W. (2004). Signaling responses in plants to heavy metal stress. Acta Physiologiae Plantarum, 29, 177–187.

    Article  Google Scholar 

  53. Maksymiec, W., Wianowska, D., Dawidowicz, A. L., Radkiewicz, S., Mardarowicz, M., & Krupa, Z. (2005). The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. Journal of Plant Physiology, 162, 1338–1346.

    Article  CAS  PubMed  Google Scholar 

  54. Peto, A., Lehotai, N., Lozano-Juste, J., León, J., Tari, I., Erdei, L., & Kolbert, Z. (2011). Involvement of nitric oxide and auxin signal transduction of copper-induced morphological responses in Arabidopsis seedlings. Annals of Botany, 108, 449–457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Llave, C., Kasschau, K. D., Rector, M. A., & Carrington, J. C. (2002). Endogenous and silencing-associated small RNAs in plants. Plant Cell, 14, 1605–1619.

  56. Zhang, H. Y., Xu, W. Z., Guo, J. B., He, Z. Y., & Ma, M. (2005). Coordinated responses of phytochelatins and metallothioneins to heavy metals in garlic seedlings. Plant Science, 169, 1059–1065.

    Article  CAS  Google Scholar 

  57. Si-Ammour, A., Windels, D., Arn-Bouloires, E., Kutter, C., Ailhas, J., Meins, F., Jr, & Vazquez, F. (2011). MiR393 and secondary siRNAs regulate expression of the TIR1/AFB2 auxin receptor clade and auxin-related development of Arabidopsis leaves. Plant Physiology, 157, 683–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Imtiaza, M., Mushtaqc, M. A., Nawazd, M. A., Ashrafe, M., Rizwanf, M. S., Mehmoodg, S., Rizwang, O. A. M., Virkh, M. S., Ijazj, Q. S. R., Androutsopoulosk, V. P., Tsatsakisk, A. D., & Colemanl, M. D. (2021). Physiological and anthocyanin Biosinthesys gene response induced by vanadium stress in mustard genotypes with distinct photosynthetic activity. Envirol Toxicol and Pharmacol. https://doi.org/10.1016/j.etap.2018.06.003

    Article  Google Scholar 

  59. Dos Reis, S. P., Lima, A. M., & de Souza, C. R. B. (2012). Recent molecular advances on downstream plant responses to abiotic stress. International Journal of Molecular Sciences, 13, 8628–8647.

  60. Verbruggen, N., Hermans, C., & Schat, H. (2009). Molecular mechanisms of metal hyper accumulation in plants. New Physiologist, 181(4), 759–776.

    Article  CAS  Google Scholar 

  61. Kopriva, S. (2006). Regulation of sulfate assimilation in Arabidopsis and beyond. Annals of Botany, 97, 479–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Elobeid, M., Gobel, C., Feussner, I., & Polle, A. (2012). Cadmium interferes with auxin physiology and lignifications in poplar. Journal of Experimental Botany, 63, 1413–1421.

    Article  CAS  PubMed  Google Scholar 

  63. Marmiroli, M., Antonioli, G., Maestri, E., & Marmiroli, N. (2005). Evidence of the involvement of plant lingo-cellulosic structure in the sequestration of Pb: An X-ray spectroscopy-based analysis. Environmental Pollution, 134, 217–227.

  64. Aina, R., Sgorbati, S., Santagostino, A., Labra, M., Ghiani, A., & Citterio, S. (2004). Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hamp. Physiologia Plantarum, 121, 472–480.

    Article  CAS  Google Scholar 

  65. Wang, H., Zhang, X., Liu, J., Kiba, T., Woo, J., Ojo, T., Hafner, M., Tuschl, T., Chua, N. H., & Wang, X. J. (2006). Deep sequencing of small RNAs specifically associated with Arabidopsis AGO1 and AGO4 uncovers new AGO functions. The Plant Journal, 67, 292–304.

    Article  Google Scholar 

  66. Xie, Z., Kasschau, K. D., & Carrington, J. C. (2003). Negative feedback regulation of Dicer-like1 in Arabidopsis by miRNA-guided mRNA degradation. Current Biology, 13, 784–789.

    Article  CAS  PubMed  Google Scholar 

  67. Jones-Rhoades, M. W., & Bartel, D. P. (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular Cell, 14, 787–799.

    Article  CAS  PubMed  Google Scholar 

  68. Wu, L., Zhou, H., Zhang, Q., Zhang, J., Ni, F., Liu, C., & Qi, Y. (2010). DNA methylation mediated by a microRNA pathway. Molecular Cell, 38, 465–475.

    Article  CAS  PubMed  Google Scholar 

  69. Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S. H., & Kim, V. N. (2004). MicroRNA genes are transcribed by polymerase II. The EMBO Journal, 23, 4051–4060.

  70. Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R. W., Steward, R., & Chen, X. (2005). Methylation as a crucial step in plant miRNA biogenesis. Science, 307, 932–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kurihara, Y., Takashi, Y., & Watanabe, Y. (2006). The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12, 206–212.

  72. Gao, J., Luo, M., Peng, H., Chen, F. B., & Li, W. B. (2019). Characterization of cadmium responsive MicroRNAs and their target genes in maize (Zea mays) roots. BMC Molecular Biology, 20, 14.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wang, B. X., Cheng, D., Chen, Z. Y., Zhang, M. M., Zhang, G. Q., Jiang, M. Y., & Tan, M. P. (2019). Bioinformatic exploration of the targets of Xylem Sap miRNAs in Maize under Cadmium stress. International Journal of Molecular Sciences, 20, 1474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chinnusamy, V., & Zhu, J. K. (2011). Epigenetic regulation of stress responses in plants. Current Opinion in Plant Biology, 212, 133–139.

    Google Scholar 

  75. Ranieri, E., Moustakas, K., Barbafieri, M., Ranieri, A. C., Herrera-Meli´ an, J. A., Petrella, A., et al. (2020). Phytoextraction technologies for mercury-and chromium-contaminated soil: A review. Journal of Chemical Technology and Biotechnology, 95, 317–327.

    Article  CAS  Google Scholar 

  76. Ghosh, S., Adhikari, S., Adhikari, S., & Hossain, Z. (2022). Contribution of plant miRNA on studies towards understanding heavy metal stress responses: Current status and future perspectives. Environmental and Experimental Botany, 194, 104705.

    Article  CAS  Google Scholar 

  77. Kumar, K., Shinde, A., Aeron, V., Verma, A., & Arif, N. S. (2022). Genetic engineering of plants for phytoremediation: Advances and challenges. Journal of Plant Biochemistry and Biotechnology, 12, 1–9.

    CAS  Google Scholar 

  78. Zhou, X., Wang, G., & Zhang, W. (2007). UV-B responsive microRNA genes in Arabidopsis thaliana. Molecular Systems Biology, 3(1), 103.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nazir, R., Khan, M., Masab, M., Rehman, H. U., Rauf, N. U., Shahab, S., et al. (2015). Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda Dam Kohat. Journal of Pharmaceutical Sciences and Research, 7(3), 89.

    CAS  Google Scholar 

  80. Yang, Z., Yang, F., Liu, J. L., Wu, H. T., Yang, H., Shi, Y., Liu, J., Zhang, Y. F., Luo, Y. R., & Chen, K. M. (2022). Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation. Science of the Total Environment, 809, 151099.

    Article  CAS  PubMed  Google Scholar 

  81. Kumar, K., Shinde, A., Aeron, V., et al. (2023). Genetic engineering of plants for phytoremediation: Advances and challenges. Journal of Plant Biochemistry and Biotechnology, 32, 12–30.

    Article  CAS  Google Scholar 

  82. Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., Wu, L., Li, S., Zhou, H., Long, C., et al. (2008). Sorting of small RNAs into Arabidopsis Argonaute complexes is directed by the 5’ terminal nucleotide. Cell, 133, 116–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally.

Corresponding author

Correspondence to Pratik Talukder.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

The authors give the consent for publication.

Conflict of Interest/Competing Interests

The authors do not have any conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talukder, P., Saha, A., Roy, S. et al. Role of mi RNA in Phytoremediation of Heavy Metals and Metal Induced Stress Alleviation. Appl Biochem Biotechnol 195, 5712–5729 (2023). https://doi.org/10.1007/s12010-023-04599-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04599-3

Keywords

Navigation