Skip to main content

Advertisement

Log in

Discovery of Potential Phytochemicals from Carica papaya Targeting BRCA-1 in Breast Cancer Treatment

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The BRCA1 and BRCA2 are genes that encode a protein that ensures the integrity of DNA and prevents the unregulated cells from proliferating. Mutations in the sequence of these genes are associated with the birth of inherited breast cancers. The research for possible human breast cancer treatment remains a vital step in the drug development process. In this study, in silico investigations involving a computational method for the discovery of active phytochemicals from Carica papaya against the BRCA-1 gene were carried out. The in silico studies for these phytochemicals datasets as BRCA-1 breast cancer therapeutic agents showed promising results through pharmacokinetics and pharmacodynamics studies. The Carica papaya compounds were found to follow the rule of five and have good bioavailability. The ADMET and drug-likeness screening score of the identified ligands also recognized their potential as a promising drug candidate against BRCA-1 while the DFT also confirm better biological and chemical reactivity of Carica papaya compounds with excellent intra-molecular charge transfer between electron donor and electron acceptor site. The results of the molecular docking provided useful information on possible target-lead interactions, demonstrating that the newly developed leads showed a high affinity for BRCA-1 targets and might be investigated for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

MMGBSA :

Molecular mechanics/generalized born surface area calculation

ADMET :

Absorption, distribution, metabolism and toxicity

Eg :

Energy band gaps

EHOMO :

Highest occupied molecular orbital energy

ELUMO :

Lowest unoccupied molecular orbital energy

I :

Ionization energy

δ :

Chemical softness

A :

Electron affinity

η :

Chemical hardness

μ :

Chemical potential

χ :

Electronegativity

References

  1. World Health Organization (WHO), Cancer. (n.d). Retrieved August 8, 2021, from https://www.who.int/news-room/factsheets/detail/cancer.

  2. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F., Global Cancer Statistics (2020). (2021). GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer Journal for clinicals, 71(3), 209–249.

    Article  Google Scholar 

  3. Ikhuoria, E. B., & Bach, C. (2018). Introduction to breast carcinogenesis – symptoms, risks factors, treatment and management. European Journal of Engineering Research and Science, 3(7), 58–66.

    Article  Google Scholar 

  4. Godet, I., Gilkes, D. M. (2017). BRCA1 and BRCA2 mutations and treatment strategies for breast cancer. Integrated Cancer Science and Theraputics, 4(1).

  5. Sukanya, V., Nagaraja, P., Manokaran, S., Reddy, A., Surana, P., & Microarray. (2018). Meta analysis of BRCA1 mutated genes involved in breast cancer. Open Access Library Journal, 5, 1–14.

    Google Scholar 

  6. Chi, J., Chung, S. Y., Parakrama, R., Fayyaz, F., Jose, J., & Saif, M. W. (2021). The role of PARP inhibitors in BRCA mutated pancreatic cancer. Therapeutic Advances in Gastroenterology, 14.

  7. Guney, E. G. (2019). Talazoparib to treat BRCA-positive breast cancer. Drugs of Today (Barcelona, Spain), 55(7), 459–467.

    Article  Google Scholar 

  8. Prabhavathi, H., Dasegowda, K., Renukananda, K., Lingaraju, K., & Naika, H. R. (2021). Exploration and evaluation of bioactive phytocompounds against BRCA proteins by in silico approach. Journal of Biomolecular Structure and Dynamics, 39(15), 5471–5485.

    Article  CAS  PubMed  Google Scholar 

  9. Greenwell, M., & Rahman, P. K. (2015). Medicinal plants: Their use in anticancer treatment. International Journal of Pharmaceutical Science Research, 6(10), 4103–4112.

    CAS  Google Scholar 

  10. Vij, T., & Prashar, Y. (2015). A review on medicinal properties of Carica papaya Linn. Asian Pacific Journal of Tropical Disease, 5(1), 1–6.

    Article  Google Scholar 

  11. Barroso, P. T., de Carvalho, P. P., Rocha, T. B., Pessoa, F. L., Azevedo, D. A., & Mendes, M. F. (2016). Evaluation of the composition of Carica papaya L. seed oil extracted with supercritical CO(2). Biotechnology Reports (Amsterdam, Netherlands), 11, 110–116. https://doi.org/10.1016/j.btre.2016.08.004

    Article  PubMed  Google Scholar 

  12. Aravind, G., Bhowmik, D., Duraivel, S., & Harish, G. (2013). Traditional and medicinal uses of Carica papaya. Journal of medicinal plants studies, 1(1), 7–15.

    Google Scholar 

  13. Ibrahim, A., & Muhammad, S. A. (2022). Antioxidant-Rich Nutraceutical as a Therapeutic Strategy for Sickle Cell Disease. Journal of the American Nutrition Association, 1–10.

  14. Otsuki, N., Dang, N. H., Kumagai, E., Kondo, A., Iwata, S., & Morimoto, C. (2010). Aqueous extract of Carica papaya leaves exhibits anti-tumor activity and immunomodulatory effects. Journal of Ethnopharmacology, 127(3), 760–767.

    Article  PubMed  Google Scholar 

  15. Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J., Honig, B., Shaw, D. E., & Friesner, R. A. (2004). A hierarchical approach to all-atom protein loop prediction. Proteins, 55(2), 351–367.

    Article  CAS  PubMed  Google Scholar 

  16. Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Compututer Aided Molecular Design, 27(3), 221–234.

    Article  Google Scholar 

  17. Oyeneyin, O. E., Obadawo, B. S., Metibemu, D. S., Owolabi, T. O., Olanrewaju, A. A., Orimoloye, S. M., Ipinloju, N., & Olusayo, O. (2022). An exploration of the antiproliferative potential of chalcones and dihydropyrazole derivatives in prostate cancer via androgen receptor: Combined QSAR, machine learning, and molecular docking techniques. Physical Chemistry Research, 10(2), 211–223.

    CAS  Google Scholar 

  18. Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196.

    Article  CAS  PubMed  Google Scholar 

  19. Roos, K., Wu, C., Damm, W., Reboul, M., Stevenson, J. M., Lu, C., Dahlgren, M. K., Mondal, S., Chen, W., Wang, L., Abel, R., & Friesner, R. A. (2019). Harder ED. OPLS3e: extending force field coverage for drug- like small molecules. Journal of Chemical Theory and Computation, 15(3), 1863–1874.

    Article  CAS  PubMed  Google Scholar 

  20. Maestro. (2018). Maestro. Schrodinger, LLC.

  21. Shelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: A software program for pK( a ) prediction and protonation state generation for drug-like molecules. Journal of Computer Aided Molecular Design., 21(12), 681–691.

    Article  CAS  PubMed  Google Scholar 

  22. Balogun, T. A., Buliaminu, K. D., Chukwudozie, O.S., Tiamiyu, Z. A., Idowu, T. J. (2021). Anticancer potential of Moringa oleifera on BRCA-1 gene: systems biology. Bioinformatics and Biology Insights.

  23. Adelakun, N., Obaseki, I., Adeniyi, A., Fapohunda, O., Obaseki, E., & Omotuyi, O. (2022). Discovery of new promising USP14 inhibitors: Computational evaluation of the thumb-palm pocket. Journal of Biomolecular Structure and Dynamics, 40(7), 3060–3070.

    Article  CAS  PubMed  Google Scholar 

  24. Prime. (2019). Prime. Schrodinger, LLC.

  25. Weis, A., Katebzadeh, K., Soderhjelm, P., Nilsson, I., & Ryde, U. (2006). Ligand affinities predicted with the MM/PBSA method: Dependence on the simulation method and the force field. Journal of Medicinal Chemistry, 49(22), 6596–6606.

    Article  CAS  PubMed  Google Scholar 

  26. Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98(7), 5648–5652.

    Article  CAS  Google Scholar 

  27. Oyeneyin, O. E., Ojo, N. D., Ipinloju, N., et al. (2022). Investigation of corrosion inhibition potentials of some aminopyridine Schiff bases using density functional theory and Monte Carlo simulation. Chemistry Africa., 5, 319–332.

    Article  CAS  Google Scholar 

  28. Jensen, F. (2021). Polarization consistent basis sets: Principles. Journal of Chemical Physics, 115(20), 9113–9125.

    Article  Google Scholar 

  29. Balogun, T. A., Ipinloju, N., Abdullateef, O. T., Moses, S. I., Omoboyowa, D. A., James, A. C., Saibu, O. A., Akinyemi, W. F., & Oni, E. A. (2021). Computational evaluation of bioactive compounds from Colocasia affinis Schott as a novel EGFR inhibitor for cancer treatment. Cancer Informatics, 20, 11769351211049244.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Oyeneyin, O. E., Abayomi, T. G., Ipinloju, N., Agbaffa, E. B., Akerele, D. D., & Arobadade, O. A. (2021). Investigation of Amino chalcone derivatives as anti-proliferative agents against MCF-7 breast cancer cell lines-DFT, molecular docking and pharmacokinetics studies. Advanced Journal of Chemistry-Section A., 4(4), 288–299.

    CAS  Google Scholar 

  31. Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P. W., & Tang, Y. (2012). admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modelling, 52(11), 3099–3105.

    Article  CAS  Google Scholar 

  32. Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W., Liu, G., & Tang, Y. (2019). admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics (Oxford, England), 35(6), 1067–1069.

    CAS  PubMed  Google Scholar 

  33. Khan, F., Pandey, P., Upadhyay, T. K., Jafri, A., Jha, N. K., Mishra, R., & Singh, V. (2020). Anti-cancerous effect of rutin against HPV-C33A cervical cancer cells via G0/G1 cell cycle arrest and apoptotic induction. Endocrine Metabolic and Immune Disorder- Drug Targets, 20(3), 409–418.

    Article  CAS  Google Scholar 

  34. Singh, S. P., & Konwar, B. K. (2012). Molecular docking studies of quercetin and its analogues against human inducible nitric oxide synthase. Springerplus, 1(1), 69.

    Article  PubMed  PubMed Central  Google Scholar 

  35. AL-Makhzumi, Q. M. A. H., Abdullah, H. I., & AL-Ani, R. R. (2018). Theoretical study of N-methyl-3-phenyl-3-(-4-(trifluoromethyl)phenoxy)propan as a drug and its five derivatives. Journal of Biosciences and Medicines, 6, 80–98.

    Article  CAS  Google Scholar 

  36. Oyeneyin, O., Ipinloju, N., Ojo, N., & Akerele, D. (2021). Structural modification of ibuprofen as new NSAIDs via DFT, molecular docking and pharmacokinetics studies. International Journal of Advances in Engineering and Pure Sciences, 33(4), 614–626.

    Article  Google Scholar 

  37. Chakraborty, T., Gazi, K., & Ghosh, D. C. (2020). Computational of the atomic radii through the conjoint action of the effective nuclear charge and ionization energy. Molecular Physics, 108, 2081–2092.

    Article  Google Scholar 

  38. Geerlings, P., & De Proft, F. (2002). Chemical reactivity as described by quantum chemical methods. International Journal of Molecular Sciences, 3(4), 276–309.

    Article  CAS  Google Scholar 

  39. Ibrahim, A., Ipinloju, N., Atasie, N. H., Babalola, R. M., Muhammad, S. A., & Oyeneyin, O. E. (2023). Discovery of small molecule PARKIN activator from antipsychotic/anti-neuropsychiatric drugs as therapeutics for PD: an in silico repurposing approach. Applied biochemistry and biotechnology, 1–23.

  40. Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advance Drug Delivery Reviews, 1(46), 3–26.

    Article  Google Scholar 

  41. Terao, J., & Mukai, R. (2014). Prenylation modulates the bioavailability and bioaccumulation of dietary flavonoids. Archives of Biochemistry and Biophysics., 559, 12–16.

    Article  CAS  PubMed  Google Scholar 

  42. Sanguinetti, M. C., Jiang, C., Curran, M. E., & Keating, M. T. (1995). A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell, 81(2), 299–307.

    Article  CAS  PubMed  Google Scholar 

  43. Wanat, K. (2020). Biological barriers, and the influence of protein binding on the passage of drugs across them. Molecular Biology Reports., 47(4), 3221–3231.

    Article  CAS  PubMed  Google Scholar 

  44. Smith, D. A., Di, L., & Kerns, E. H. (2010). The effect of plasma protein binding on in vivo efficacy: Misconceptions in drug discovery. Nature Review Drug Discovery., 9(12), 929–939.

    Article  CAS  Google Scholar 

  45. McDonnell, A. M., & Dang, C. H. (2013). Basic review of the cytochrome p450 system. Journal of Advanced Practical Oncology, 4(4), 263–268. https://doi.org/10.6004/jadpro.2013.4.4.7

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Oyeronke A. Odunola and Dr. Amos O. Abolaji of the Department of Biochemistry, College of Medicine, University of Ibadan, for creating an enabling environment and motivation for the success of this study. We are also grateful to Mr. Akewushola Nurudeen for the proofreading services provided towards the completion of this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: A. Ibrahim, and N. Ipinloju. Introduction and methodology: A. Ibrahim, A. O Aiyelabegan, and A.A. Alfa-Ibrahim. Formal analysis: A. Ibrahim., and N. Ipinloju. Data curation: A. Ibrahim, and N. Ipinloju. Writing original draft preparation: A. Ibrahim and N. Ipinloju. Writing review and editing: S. A. Muhammad, A. Ibrahim, N. Ipinloju, A. O Aiyelabegan, A.A. O. E. Oyeneyin and Alfa-Ibrahim. Supervision: S. A. Muhammad and O. E. Oyeneyin. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Abdulwasiu Ibrahim.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, A., Ipinloju, N., Aiyelabegan, A.O. et al. Discovery of Potential Phytochemicals from Carica papaya Targeting BRCA-1 in Breast Cancer Treatment. Appl Biochem Biotechnol 195, 7159–7175 (2023). https://doi.org/10.1007/s12010-023-04473-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04473-2

Keywords

Navigation