Skip to main content

Advertisement

Log in

A Critical Review on the Recovery of Base and Critical Elements from Electronic Waste-Contaminated Streams Using Microbial Biotechnology

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pollution by end-of-life electronics is a rapid ever-increasing threat and is a universal concern with production of million metric tons of these wastes per annum. Electronic wastes (E-waste) are rejected electric or electronic equipment which have no other applications. The aggrandized unproper land filling of E-waste may generate hazardous effects on living organisms and ecosystem. At present, millions of tons of E-waste await the advancement of more efficient and worthwhile recycling techniques. Recovery of base and critical elements from electronic scraps will not only reduce the mining of these elements from natural resources but also reduces the contamination caused by the hazardous chemicals (mostly organic micropollutants) released from these wastes when unproperly disposed of. Bioleaching is reported to be the most eco-friendly process for metal recycling from spent electronic goods. A detailed investigation of microbial biodiversity and a molecular understanding of the metabolic pathways of bioleaching microorganisms will play a vital function in extraction of valuable minerals from the end-of-life scraps. Bioleaching technique as an economic and green technology costs around 7 USD per kg for effective reusing of E-waste as compared to other physical and chemical techniques. This review provides a summary of worldwide scenario of electronic pollutants; generation, composition and hazardous components of electronic waste; recycling of valuable elements through bioleaching; mechanism of bioleaching; microorganisms involved in base and critical element recovery from E-waste; commercial bioleaching operations; and upcoming aspects of this eco-friendly technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Global E-waste Monitor. (2020). ITU-D. https://www.itu.int/en/ITU-D/Environment/Pages/Spotlight/Global-Ewaste-Monitor-2020.aspx

  2. Akram, R., Natasha Fahad, S., et al. (2019). Trends of electronic waste pollution and its impact on the global environment and ecosystem. Environmental Science and Pollution Research, 26, 16923–16938.

    Article  CAS  PubMed  Google Scholar 

  3. Tansel, B. (2017). From electronic consumer products to e-wastes: Global outlook, waste quantities, recycling challenges. Environment International, 98, 35–45. https://doi.org/10.1016/j.envint.2016.10.002

    Article  PubMed  Google Scholar 

  4. Ajim, S., & Ajim, A. S. (2017). E-waste generation and its possible impacts on environment and human health: A study on Kolkata. Asian Profile, 45, 77–94.

    Google Scholar 

  5. Garg, N., Adhana, D. (2019). E-waste management in India: A study of current scenario (January 31, 2019). International Journal of Management, Technology And Engineering. 9(1), 2249–7455. https://ssrn.com/abstract=3356877

  6. Kumar, A., Holuszko, M., & Espinosa, D. C. R. (2017). E-waste: An overview on generation, collection, legislation and recycling practices. Resources, Conservation and Recycling, 122, 32–42.

    Article  Google Scholar 

  7. Li, J., Zeng, X., Chen, M., Ogunseitan, O. A., & Stevels, A. (2015). Control-Alt-Delete: Rebooting solutions for the e-waste problem. Environmental Science and Technology, 49(12), 7095–7108.

    Article  CAS  PubMed  Google Scholar 

  8. Cui, J., & Forssberg, E. (2007). Characterization of shredded television scrap and implications for materials recovery. Waste Management, 27, 415–424.

    Article  PubMed  Google Scholar 

  9. Das, A. P., Ghosh, S., Mohanty, S., & Sukla, L. B. (2015). Advances in manganese pollution and its bioremediation. Environmental Microbial Biotechnology: Soil Biology, Springer.

    Book  Google Scholar 

  10. Das, A. P., Ghosh, S., Mohanty, S., & Sukla, L. (2015). Consequences of manganese compounds: A review. Toxicological & Environmental Chemistry, 96, 981–997.

    Article  Google Scholar 

  11. Chen, S., Yang, Y., Liu, C., Dong, F., & Liu, B. (2015). Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans. Chemosphere, 141, 162–168.

    Article  CAS  PubMed  Google Scholar 

  12. Dave, S. R., Sodha, A. B., Tipre, D. R. (2018). Microbial technology for metal recovery from e-waste printed circuit boards. Journal of Bacteriology & Mycology: Open Access, 6(4), 241‒247. https://doi.org/10.15406/jbmoa.2018.06.00212

  13. Veit, H. M., Bernardes, A. M., Ferreira, J. Z., Tenório, J. A. S., & de FragaMalfatti, C. (2006). Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy. Journal of Hazardous Materials, 137, 1704–1709.

    Article  CAS  PubMed  Google Scholar 

  14. Duan, C., Wen, X., Shi, C., Zhao, Y., Wen, B., & He, Y. (2009). Recovery of metals from waste printed circuit boards by a mechanical method using a water medium. Journal of Hazardous Materials, 166(1), 478–482.

    Article  CAS  PubMed  Google Scholar 

  15. Das, A. P., Vidyadhar, A., & Mehrotra, S. P. (2009). A novel flow sheet for the recovery of metal values from waste printed circuit boards. Resources, Conservation and Recycling, 53(8), 464–469.

    Article  Google Scholar 

  16. Das, A. P., Sukla, L. B., Pradhan, N., & Nayak, S. (2011). Manganese biomining: A review. Bioresource Technology, 102, 7381–7387.

    Article  CAS  PubMed  Google Scholar 

  17. Das, A. P., & Singh, S. (2011). Occupational health assessment of chromite toxicity among Indian miners. Indian Journal of Occupational and Environmental Medicine, 15, 10–17.

    Article  Google Scholar 

  18. Zhang, B., & Sun, H. (2020). Novel and legacy poly- and perfluoroalkyl substances (PFASs) in indoor dust from urban, industrial, and e-waste dismantling areas: The emergence of PFAS alternatives in China. Environmental Pollution, 263, 114461.

    Article  CAS  PubMed  Google Scholar 

  19. Garg, S., Kumar, P., Mishra, V., Guijt, R., Singh, P., Dumée, F. L., & Sharma, R. S. (2020). A review on the sources, occurrence and health risks of per-/poly-fluoroalkyl substances (PFAS) arising from the manufacture and disposal of electric and electronic products. Journal of Water Process Engineering., 38, 101683.

    Article  Google Scholar 

  20. Global e-waste generation forecast 2010–2018, Statista 2019, https://www.statista.com/statistics/499891/projection-ewaste-generation-worldwide/

  21. Balde, C. P., Wang, F., Kuehr, R., & Huisman, J. (2015). The global e-waste monitor – 2014, United Nations University, IAS – SCYCLE. Bonn.

    Google Scholar 

  22. Mishra, S., Swain, S., Sahoo, M., Mishra, S., & Das, A. P. (2021). Microbial colonization and degradation of microplastics in aquatic ecosystem: A review, Geomicrobiology Journal.https://doi.org/10.1080/01490451.2021.1983670

  23. Ala-Kurikka, S. (2015). Electronic goods’ life spans shrinking, study indicates. http://www.endseurope.com/article/39711/electronic-goods-life-spans-shrinking-study

  24. Vaccari, M., Vinti, G., Cesaro, A., Belgiorno, V., Salhofer, S., Dias, M. I., & Jandric, A. (2019). WEEE treatment in developing countries: Environmental pollution and health consequences—An overview. International Journal of Environmental Research and Public Health, 16(9), 1595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hameed, H. B., Ali, Y., & Petrillo, A. (2020). Environmental risk assessment of E-waste in developing countries by using the modified-SIRA method. Science of The Total Environment, 138525. https://www.sciencedirect.com/science/article/pii/S0048969720320386

  26. Brune, M. N., Goldizen, F., Neira, M., Berg, M. V. D., Lewis, N., King, M., Suk, W. A., Carpenter, D. O., Arnold, R. G., & Sly, P. D. (2013). Health effects of exposure to e-waste. The Lancet Global Health, 1(2), 70. https://doi.org/10.1016/S2214-109X(13)70020-2

    Article  Google Scholar 

  27. Dai, Q., Xu, X., Eskenazi, B., Asante, K. A., Chen, A., Fobil, J., et al. (2020). Severe dioxin-like compound (DLC) contamination in e-waste recycling are as: An under-recognized threat to local health. Environment International, 139, 105731.

    Article  CAS  PubMed  Google Scholar 

  28. Das, A. P., & Mishra, S. (2008). Hexavalent Chromium (VI): Health hazards & Environmental Pollutant. Journal of Environmental Research and Development, 2, 386–392.

    CAS  Google Scholar 

  29. Lyche, J. L., Rosseland, C., Berge, G., & Polder, A. (2015). Human health risk associated with brominated flame-retardants (BFRs). Environment International, 74, 170–180. https://doi.org/10.1016/j.envint.2014.09.006

    Article  CAS  PubMed  Google Scholar 

  30. Tsydenova, O., & Bengtsson, M. (2011). Chemical hazards associated with treatment of waste electrical and electronic equipment. Waste Management, 31, 45–58.

    Article  CAS  PubMed  Google Scholar 

  31. Cesaro, A., Belgiorno, V., Gorrasi, G., et al. (2019). A relative risk assessment of the open burning of WEEE. Environmental Science and Pollution Research, 26, 11042–11052. https://doi.org/10.1007/s11356-019-04282-3

    Article  PubMed  Google Scholar 

  32. Das, A. P., & Mishra, S. (2010). Biodegradation of the Metallic carcinogen hexavalent chromium Cr (VI) by an indigenously isolated bacterial strain. J. Carcinogenesis, 9, 6.

    Article  Google Scholar 

  33. Shi, A., Shao, Y., Zhao, K., & Fu, W. (2020). Long-term effect of E-waste dismantling activities on the heavy metals pollution in paddy soils of southeastern China. Science of The Total Environment., 705, 135971.

    Article  CAS  PubMed  Google Scholar 

  34. Mishra, S., Rath, C. C., & Das, A. P. (2019). Marine microfiber pollution: A review on present status and future challenges. Marine Pollution Bulletin, 140, 188–197.

    Article  CAS  PubMed  Google Scholar 

  35. Quinete, N., Schettgen, T., Bertram, J., & Kraus, T. (2014). Occurrence and distribution of PCB metabolites in blood and their potential health effects in humans: A review. Environmental Science and Pollution Research, 21, 11951–11972.

    Article  CAS  PubMed  Google Scholar 

  36. Cogliano, V. J., Baan, R., Straif, K., Grosse, Y., Lauby-Secretan, B., El Ghissassi, F., Bouvard, V., Benbrahim-Tallaa, L., Guha, N., Freeman, C., Galichet, L., & Wild, C. P. (2011). Preventable exposures associated with human cancers. Journal of the National Cancer Institute, 103(24), 1827–1839.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cui, J., & Zhang, L. (2008). Metallurgical recovery of metals from electronic waste: A review. Journal of Hazardous Materials, 158, 228–256.

    Article  CAS  PubMed  Google Scholar 

  38. Faramarzi, M. A., Stagars, M., Pensini, E., Krebs, W., & Brandl, H. (2004). Metal solubilization from metal-containing solid materials by cyanogenic Chromobacteriumviolaceum. Journal of Biotechnology, 113, 321–326.

    Article  CAS  PubMed  Google Scholar 

  39. Ghosh, B., Ghosh, M. K., Parhi, P., Mukherjee, P. S., & Mishra, B. K. (2015). Waste printed circuit boards recycling: An extensive assessment of current status. Journal of Cleaner Production, 94, 5–19.

    Article  CAS  Google Scholar 

  40. Berrin, T. (2016). From electronic consumer products to e-wastes: Global outlook, waste quantities, recycling challenges. Environment International, 98, 35–45.

    Google Scholar 

  41. Froelich, D., Maris, E., Haoues, N., Chemineau, L., Renard, H., Abraham, F., & Lassartesses, R. (2007). State of the art of plastic sorting and recycling: Feedback to vehicle design. Minerals Engineering, 20, 902–912.

    Article  CAS  Google Scholar 

  42. Chuan, M., Jie, Y., Ben, W., Zijian, S., Jun, X., Song, H., Sheng, S., & Lushi, S. (2016). Chemical recycling of brominated flame retarded plastics from e-waste for clean fuels production: A review. Renewable and Sustainable Energy Reviews, 61, 433–450.

    Article  Google Scholar 

  43. Wäger, P., Böni, H., Buser, A., Morf, L., Schluep, M., & Streiche, M. O. (2009). Recycling of plastics from waste electrical and electronic equipment (WEEE) – Tentative results of a Swiss study.

  44. Arya, S., & Kumar, S. (2020). Bioleaching: Urban mining option to curb the menace of E-waste challenge. Bioengineered, 11(1), 640–660. https://doi.org/10.1080/21655979.2020.1775988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Awasthi, A. K., Zeng, X., & Li, J. (2016). Environmental pollution of electronic waste recycling in India: A critical review. Environmental Pollution, 211, 259–270.

    Article  CAS  PubMed  Google Scholar 

  46. Bakas, I., Fischer, C., Haselsteiner, S., McKinnon, D., Milios, L., Harding, A., Kosmol, J., Plepys, A., Tojo, N., Wilts, H., & Wittmer, D. (2012). Present and potential future recycling of critical metals in WEEE. Copenhagen Resource Institute.

    Google Scholar 

  47. Bertini, I., & Cavallaro, G. (2008). Metals in the “omics” world: Copper homeostasis and cytochrome c oxidase assembly in a new light. JBIC Journal of Biological Inorganic Chemistry, 13, 3–14.

    Article  CAS  PubMed  Google Scholar 

  48. Mohanty, S., Ghosh, S., Nayak, S., & Das, A. P. (2017). Bioleaching of manganese by Aspergillus sp. isolated from mining deposits. Chemosphere, 172, 302–309.

    Article  CAS  PubMed  Google Scholar 

  49. Brigden, K., Labunska, I., Santillo, D., & Allsopp, M. (2005). Recycling of electronic wastes in China & India: Workplace & environmental contamination. Greenpeace International, Exeter: UK.

    Google Scholar 

  50. Das, A. P., Kumar, S. P., & Swain, S. (2014). Recent advances in biosensor based endotoxin detection. Biosensors & Bioelectronics, 51, 62–75.

    Article  CAS  Google Scholar 

  51. Işildar, A., van Hullebusch, E. D., Rene, E. R., Lens, P. N. (2017). Biorecovery of metals from waste electrical and electronic equipment (WEEE) and its techno-economic and sustainability assessment. 15th International Conference on Environmental Science and Technology. https://cest.gnest.org/sites/default/files/presentation_file_list/cest2017_01354_oral_paper.pdf

  52. Ghosh, S., Mohanty, S., Akcil, A., Sukla, L. B., & Das, A. P. (2016). A greener approach for resource recycling: Manganese bioleaching. Chemosphere, 154, 628–639.

    Article  CAS  PubMed  Google Scholar 

  53. Sethurajan, M., van Hullebusch, E. D., & Nancharaiah, Y. V. (2018). Biotechnology in the management and resource recovery from metal bearing solid wastes: Recent advances. Journal of Environmental Management, 211, 138–153.

    Article  CAS  PubMed  Google Scholar 

  54. Mohanty, S., Ghosh, S., Nayak, S., & Das, A. P. (2016). Isolation, identification and screening of manganese solubilizing fungi from low grade manganese ore deposits. Geomicrobiology, 34, 309–316.

    Article  Google Scholar 

  55. Mi, S., Song, J., Lin, J., Che, Y., Zheng, H., & Lin, J. (2011). Complete genome of Leptospirillum ferriphilum ML-04 provides insight into its physiology and environmental adaptation. The Journal of Microbiology, 49, 890–901.

    Article  CAS  PubMed  Google Scholar 

  56. Bankole, M. T., Abdulkareem, A. S., Mohammed, I. A., et al. (2019). Selected heavy metals removal from electroplating wastewater by purified and polyhydroxylbutyrate functionalized carbon nanotubes adsorbents. Science and Reports, 9, 4475. https://doi.org/10.1038/s41598-018-37899-4

    Article  CAS  Google Scholar 

  57. Bonnefoy, V., & Holmes, D. S. (2012). Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments. Environmental Microbiology, 14(7), 1597–1611.

    Article  CAS  PubMed  Google Scholar 

  58. Ghosh, S., Bal, B., & Das, A. P. (2017). Enhancing manganese recovery from low grade ores by using mixed culture of indigenously isolated bacterial strains. Geomicrobiology, 35, 242–246.

    Article  Google Scholar 

  59. Campbell, S. C., Olson, G. J., & Clark, T. R. (2001). Biogenic production of cyanide and its application to gold recovery. Journal of Microbiology and Biotechnology, 26(3), 134–139.

    CAS  Google Scholar 

  60. Singh, R. P., Mishra, S., & Das, A. P. (2020). Synthetic microfibers: Pollution toxicity and remediation. Chemosphere, 257, 127199. https://doi.org/10.1016/j.chemosphere.2020.127199

    Article  CAS  PubMed  Google Scholar 

  61. Muammer, K. (2016). Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Management, 57, 64–90.

    Article  Google Scholar 

  62. Sanket, A. S., Ghosh, S., Mohanty, S., Sahoo, R., & Das, A. P. (2016). Identification of acidophilic manganese (Mn) solubilizing bacteria from mining effluents and their application in mineral beneficiation. Geomicrobiology Journal, 34, 71–80.

    Article  Google Scholar 

  63. Ghosh, S., Mohanty, S., Nayak, S., Sukla, L. B., & Das, A. P. (2015). Molecular identification of indigenous manganese solubilising bacterial biodiversity from manganese mining deposits. Journal of Basic Microbiology, 55, 1–9.

    Google Scholar 

  64. Mohanty, S., Ghosh, S., Bal, B., & Das, A. P. (2018). A review of biotechnology processes applied for manganese recovery from wastes. Reviews in Environmental Science and Bio/Technology, 17(4), 791–811.

    Article  CAS  Google Scholar 

  65. Cárdenas, J. P., Valdés, J., Quatrini, R., Duarte, F., & Holmes, D. S. (2010). Lessons from the genomes of extremely acidophilic bacteria and archaea with special emphasis on bioleaching microorganisms. Applied Microbiology and Biotechnology, 88(3), 605–620.

    Article  PubMed  Google Scholar 

  66. Gadd, G. M. (2010). Metals, minerals and microorganisms: Geomicrobiology and bioremediation. Microbiology, 156, 609–643.

    Article  CAS  PubMed  Google Scholar 

  67. Chan, J. K. Y., & Wong, M. H. (2012). A review of environmental fate, body burdens, and human health risk assessment of PCDD/Fs at two typical electronic waste recycling sites in China. Science of the Total Environment, 463–464, 1111–1123.

    PubMed  Google Scholar 

  68. Danilo, B., Nguyen, K. A., Silva, R. A., Park, J. H., Gupta, V., Han, Y., Lee, Y., & Kim, H. (2016). Experiences and future challenges of bioleaching research in South Korea. Minerals, 6(4), 128.

    Google Scholar 

  69. Ghosh, S., & Das, A. P. (2017). Bioleaching of manganese from mining waste residues using Acinetobacter sp. Geology, Ecology, and Landscapes, 1, 77–83.

    Article  Google Scholar 

  70. Ghosh, S., & Das, A. P. (2015). Modified titanium oxide (TiO2) nanocomposites and its array of applications: A review. Toxicological & Environmental Chemistry, 97, 491–514.

    Article  CAS  Google Scholar 

  71. Kumar, M. S., Das, A. P., Ghosh, S., & Nayak, S. (2016). Recent advances in biosensor based diagnosis of urinary tract infection. Biosensors and Bioelectronics, 80, 497–510.

    Article  CAS  PubMed  Google Scholar 

  72. Fu, K., Wang, B., Chen, H., Chen, M., & Chen, S. (2016). Bioleaching of Al from coarse-grained waste printed circuit boards in a stirred tank reactor. Procedia Environmental Sciences, 31, 897–902.

    Article  Google Scholar 

  73. Ilyas, S., Lee, J., & Crystal, L. (2015). Hybrid leaching: An emerging trend in bioprocessing of secondary resources. Microbiology for Minerals, Metals, Materials and the Environment, 14, 359–382.

    Google Scholar 

  74. Ilyas, S., & Lee, J. (2014). Bioleaching of metals from electronic scrap in a stirred tank reactor. Hydrometallurgy, 149, 50–62. https://doi.org/10.1016/j.hydromet.2014.07.004

    Article  CAS  Google Scholar 

  75. Chen, Z., Yang, M., Shi, Q., et al. (2019). Recycling waste circuit board efficiently and environmentally friendly through small-molecule assisted dissolution. Science and Reports, 9, 17902. https://doi.org/10.1038/s41598-019-54045-w

    Article  CAS  Google Scholar 

  76. Chen, X., Chen, Y., Zhou, T., Liu, D., Hu, H., & Fan, S. (2015). Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries. Waste Management, 38, 349–356.

    Article  CAS  PubMed  Google Scholar 

  77. Creamer, N. J., Baxter-Plant, V. S., Henderson, J., Potter, M., & Macaskie, L. E. (2006). Palladium and gold removal and recovery from precious metal solutions and electronic scrap leachates by Desulfovibrio desulfuricans. Biotechnology Letters, 28(18), 475–484.

    Article  Google Scholar 

  78. Liu, X., Liu, H., Wu, W., Zhang, X., Gu, T., Zhu, M., & Tan, W. (2020). Oxidative stress induced by metal ions in bioleaching of LiCoO2 by an acidophilic microbial consortium. Frontiers in Microbiology, 10, 3058.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lecler, M. T., Zimmermann, F., Silvente, E., Clerc, F., Chollot, A., & Grosjean, J. (2015). Exposure to hazardous substances in cathode ray tube (CRT) recycling sites in France. Waste Management, 39, 226–235.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, M., Wang, X., Yang, L., & Chu, Y. (2019). Research on progress in combined remediation technologies of heavy metal polluted sediment. International Journal of Environmental Research and Public Health, 16, 5098. https://doi.org/10.3390/ijerph16245098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang, Y., Liu, S., Xie, H., Zeng, X., & Li, Z. (2012). Current status on leaching precious metals from waste printed circuit boards. Procedia Environmental Sciences, 16, 560–568.

    Article  Google Scholar 

  82. Xue, M., Yang, Y., Ruan, J., & Xu, Z. (2012). Assessment of noise and heavy metals (Cr, Cu, Cd, Pb) in the ambience of the production line for recycling waste printed circuit boards. Environmental Science and Technology, 46, 494–499.

    Article  CAS  PubMed  Google Scholar 

  83. Namias, J. (2013). The future of electronic waste recycling in the United States: Obstacles and domestic solutions. Columbia University.

    Google Scholar 

  84. Kellner, R. (2008). Integrated approach to e-waste recycling. Electronic waste management (pp. 111–160). Royal Society of Chemistry.

    Chapter  Google Scholar 

  85. Van Yken, J., Cheng, K. Y., Boxall, N. J., Nikoloski, A. N., Moheimani, N., Valix, M., & Kaksonen, A. H. (2023). An integrated biohydrometallurgical approach for the extraction of base metals from printed circuit boards. Hydrometallurgy, 216(2023), 105998.

    Article  Google Scholar 

  86. Khaliq, A., Rhamdhani, M. A., Geoffrey, B. G., & Masood, S. (2014). Metal extraction processes for electronic waste and existing industrial routes: A review and Australian perspective. Resources, 3(1), 152–179.

    Article  Google Scholar 

  87. Creczynski-Pasa, T. B., & Antônio, R. V. (2004). Energetic metabolism of Chromobacterium violaceum. Genetics and Molecular Research, 3(1), 162–166.

    CAS  PubMed  Google Scholar 

  88. Di-Ruggiero, J., & Gounot, A. M. (1990). Microbial Manganese reduction mediated by bacterial strains isolated from aquifer sediments. Microbial Ecology, 20, 53–63.

    Article  CAS  PubMed  Google Scholar 

  89. Durán, M., Faljoni-Alario, A., & Durán, N. (2010). Chromobacterium violaceum and its important metabolites—Review. Folia Microbiology, 55(6), 535–547.

    Article  Google Scholar 

  90. Ehrlich, H. L. (1993). A possible mechanism for the transfer of reducing power to insoluble mineral oxide in bacterial respiration. The MineralsIn A. E. Torma, M. L. Apel, & C. L. Brierley (Eds.), Biohydrometallurgical Technologies (Vol. II, pp. 415–422). Metals and Materials Society.

    Google Scholar 

  91. Geir, B., Maryam, D., Joachim, M., & Jan, A. (2017). The toxicology of mercury: Current research and emerging trends. Environmental Research, 159, 545–554.

    Article  Google Scholar 

  92. Ghauri, M. A., Okibe, N., & Johnson, D. B. (2007). Attachment of acidophilic bacteria to solid surfaces: The significance of species and strain variations. Hydrometallurgy, 85, 72–80.

    Article  CAS  Google Scholar 

  93. Horta, A. R., Mathieux, F., Huisman, J., et al. (2020). Novel indicators to better monitor the collection and recovery of (critical) raw materials in WEEE: Focus on screens. Resources, Conservation and Recycling, 157, 104772. https://doi.org/10.1016/j.resconrec.2020.104772

    Article  Google Scholar 

  94. Kicheo, K., & Kidong, K. (2017). Valuable recycling of waste glass generated from the liquid crystal display panel industry. Journal of Cleaner Production, 174, 191–198.

    Google Scholar 

  95. Kim, M. J., Seo, J. Y., Choi, Y. S., & Kim, G. H. (2016). Bioleaching of spent Zn-Mn or Ni-Cd batteries by Aspergillus species. Waste Management, 51, 168–173.

    Article  CAS  PubMed  Google Scholar 

  96. Kudpeng, K., Bohu, T., Morris, C., Thiravetyan, P., & Kaksonen, A. H. (2020). Bioleaching of gold from sulfidic gold ore concentrate and electronic waste by Roseovarius tolerans and Roseovarius mucosus. Microorganisms, 8(11), 1783. https://doi.org/10.3390/microorganisms8111783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Annamalai, M., & Gurumurthy, K. (2021). Characterization of end-of-life mobile phone printed circuit boards for its elemental composition and beneficiation analysis. Journal of the Air & Waste Management Association, 71(3), 315–327. https://doi.org/10.1080/10962247.2020.1813836

    Article  CAS  Google Scholar 

  98. Ten states contribute 70% of e-waste generated in India. Financial express, Mar 13 2008. https://www.financialexpress.com/archive/ten-states-contribute-70-of-e-waste-generated-in-india/283644/

  99. Cockell, C. S., Santomartino, R., Finster, K., et al. (2020). Space station biomining experiment demonstrates rare earth element extraction in microgravity and Mars gravity. Nature Communications, 11, 5523. https://doi.org/10.1038/s41467-020-19276-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. García-Balboa, C., Martínez-AlesónGarcía, P., López-Rodas, V., Costas, E., & Baselga-Cervera, B. (2022). Microbial biominers: Sequential bioleaching and biouptake of metals from electronic scraps. Microbiology Open, 11(1), e1265. https://doi.org/10.1002/mbo3.1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Butturi, M. A., Marinelli, S., Gamberini, R., & Rimini, B. (2020). Ecotoxicity of plastics from informal waste electric and electronic treatment and recycling. Toxics, 8, 0099. https://doi.org/10.3390/toxics8040099

  102. Generation of electronic waste per capita worldwide in 2019. https://www.statista.com/statistics/499932/per-capita-ewaste-generation-worldwide-by-region/

  103. Zhou, S., Gan, M., Zhu, J., Liu, X., & Qiu, G. (2018). Assessment of bioleaching microbial community structure and function based on next-generation sequencing technologies. Minerals, 8, 596. https://doi.org/10.3390/min8120596

    Article  CAS  Google Scholar 

  104. Ghosh, S., & Das, A. P. (2018). Metagenomic insights into the microbial diversity in manganese-contaminated mine tailings and their role in biogeochemical cycling of manganese. Scientific Reports, 8, 8257. https://doi.org/10.1038/s41598-018-26311-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Borja, D., Nguyen, K. A., Silva, R. A., Park, J. H., Gupta, V., Han, Y., Lee, Y., & Kim, H. (2016). Experiences and future challenges of bioleaching research in South Korea. Minerals, 6, 128. https://doi.org/10.3390/min6040128

    Article  Google Scholar 

  106. Brierley, J., & Brierley, C. (2001). Present and future commercial applications of biohydrometallurgy. Hydrometallurgy, 59, 233–239.

    Article  CAS  Google Scholar 

  107. Narayanasamy, M., Dhanasekaran, D., Vinothini, G., et al. (2018). Extraction and recovery of precious metals from electronic waste printed circuit boards by bioleaching acidophilic fungi. International Journal of Environmental Science and Technology, 15, 119–132. https://doi.org/10.1007/s13762-017-1372-5

    Article  CAS  Google Scholar 

  108. Jerez, C. A. (2017) 3.60 - Bioleaching and biomining for the industrial recovery of metals, comprehensive biotechnology (Third Edition), Volume 3, Pages 758–771

  109. Priyashantha, A. K. H., Pratheesh, N., & Pretheeba, P. (2022). E-waste scenario in South-Asia: An emerging risk to environment and public health. Environmental Analysis, Health and Toxicology, 37(3), e2022022. https://doi.org/10.5620/eaht.2022022

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sunanda Mishra contributed to the conception of the study and collected data from scientific articles, and Shreya Gosh wrote the manuscript. Eric van Hullebusch and Shikha Singh performed the supervision, conceptualization and validation, and Alok Prasad Das edited the whole manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alok Prasad Das.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Ghosh, S., van Hullebusch, E.D. et al. A Critical Review on the Recovery of Base and Critical Elements from Electronic Waste-Contaminated Streams Using Microbial Biotechnology. Appl Biochem Biotechnol 195, 7859–7888 (2023). https://doi.org/10.1007/s12010-023-04440-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04440-x

Keywords

Navigation