Skip to main content
Log in

Copper Phthalocyanine Improving Nonaqueous Catalysis of Pseudomonas cepacia Lipase for Ester Synthesis

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The nonaqueous catalysis of lipases is significant for synthesis of high pure esters, but they usually behave low catalytic activity due to denaturation and aggregation of enzyme protein in organic phases. To improve the nonaqueous catalysis, the inexpensive copper phthalocyanine was taken as a new carrier on which Pseudomonas cepacia lipase was immobilized by physical absorption, and used for synthesis of hexyl acetate, an important flavor, via transesterification of hexanol and vinyl acetate. Results showed that the desired loading was 10-mg lipase immobilized on 10-mg copper phthalocyanine powder. When the immobilized lipase was employed in the reaction system consisted of 1.5-mL hexanol and 1.5-mL vinyl acetate at 37°C and 160 rpm, the conversion was fivefolds of that catalyzed by native lipase after 1 h, and reached 99.0% after 8 h. In six times of 8-h reuses, the immobilized lipase behaved an activity attenuation rate 1.22% h−1, lower than 1.77% h−1 of native lipase, which meant that the immobilized lipase was more stable. Even at the room temperature and the static state without shaking or stirring, the immobilized lipase still brought conversion 42.8% after 10 h and the native lipase gave 20.1%. Obviously, the immobilized lipase is an available biocatalyst in organic phase and has great potential in food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

N/A

References

  1. Bauer, K., Garbe, D., & Surburg, H. (2008). Common fragrance and flavor materials: Preparation, properties and uses (3rd ed.). Wiley-VCH Publishers.

    Google Scholar 

  2. Yu, Z. R., Chang, S. W., Wang, H. Y., & Shieh, C. J. (2003). Study on synthesis parameters of lipase-catalyzed hexyl acetate in supercritical CO2 by response surface methodology. J. Am. Oil Chem. Soc., 80(2), 139–144.

    Article  CAS  Google Scholar 

  3. Patel, D., & Saha, B. (2007). Heterogeneous kinetics and residue curve map (RCM) determination for synthesis of n-hexyl acetate using ion-exchange resins as catalysts. Ind. Eng. Chem. Res., 46, 3157–3169.

    Article  CAS  Google Scholar 

  4. Yang, Z., Pan, Y., Mei, Z., & Zhang, W. (2012). Preparation of mesoporous MnO2/C catalyst for n-hexyl acetate synthesis. Appl. Surf. Sci., 258, 4756–4763.

    Article  CAS  Google Scholar 

  5. Colombo, C., & Bennet, A. J. (2019). The physical organic chemistry of glycopyranosyl transfer reactions in solution and enzyme-catalyzed. Curr. Opin. Chem. Biol., 53, 145–157.

    Article  CAS  PubMed  Google Scholar 

  6. Cai, X., Wang, W., Lin, L., He, D., Shen, Y., Wei, W., & Wei, D. Z. (2017). Cinnamyl esters synthesis by lipase-catalyzed transesterification in a non-aqueous system. Catal. Lett., 147, 946–952.

    Article  CAS  Google Scholar 

  7. Yang, B. (2006). Lipase-catalyzed synthesis of hexyl acetate in non-aqueous medium. Sci. Technol. Food Ind., 27(6), 144–147.

    CAS  Google Scholar 

  8. Murcia, M. D., Gómez, M., Gómez, E., Gómez, J. L., Hidalgo, A. M., Sánchez, A., & Vergara, P. (2018). Kinetic modelling and kinetic parameters calculation in the lipase-catalysed synthesis of geranyl acetate. Chem. Eng. Res. Des., 138, 135–143.

    Article  CAS  Google Scholar 

  9. Wackett, L. P., & Robinson, S. L. (2020). The ever-expanding limits of enzyme catalysis and biodegradation: Polyaromatic, polychlorinated, polyfluorinated, and polymeric compounds. Biochem. J., 477, 2875–2891.

    Article  CAS  PubMed  Google Scholar 

  10. Fonseca, A. M., Freitas, Í. B., Soares, N. B., Araújo, F. A. M., Gaieta, E. M., Santos, J. C. S., Sobrinho, A. C. N., Marinho, E. S., & Colares, R. P. (2022). Synthesis, biological activity, and in silico study of bioesters derived from bixin by the CALB enzyme. Biointerface Res. Appl. Chem., 12(5), 5901–5917.

    Google Scholar 

  11. Mota, G. F., Sousa, I. G., Oliveira, A. L. B., Cavalcante, A. L. G., Moreira, K. S., Cavalcante, F. T. T., Souza, J. E. S., Falcão, Í. R. A., Rocha, T. G., Valério, R. B. R., Carvalho, S. C. F., Neto, F. S., Serpa, J. F., Lima, R. K. C., Souza, M. C. M., & Santos, J. C. S. (2022). Biodiesel production from microalgae using lipase-based catalysts: Current challenges and prospects. Algal Res., 62, 102616.

    Article  Google Scholar 

  12. Lima, G. V., Silva, M., Thiago, D., Lima, L. D., Oliveira, M. D., Lemos, T. D., Zampieri, D., Santos, J. C. S., Rios, N. S., Gonçalves, L. R. B., Molinari, F., & Mattos, M. C. (2017). Chemoenzymatic synthesis of (S)-Pindolol using lipases. Appl. Catal. A-Gen., 546, 7–14.

    Article  CAS  Google Scholar 

  13. Verdasco-Martín, C. M., Villalba, M., Santos, J. C. S. D., Tobajas, M., Fernandez-Lafuente, R., & Otero, C. (2016). Effect of chemical modification of Novozym 435 on its performance in the alcoholysis of camelina oil. Biochem. Eng. J., 111, 75–86.

    Article  Google Scholar 

  14. Moreira, K. S., Oliveira, A. L. B., Júnior, L. S. M., Sousa, I. G., Cavalcante, A. L. G., Neto, F. S., Valério, R. B. R., Chaves, A. V., Fonseca, T. S., Cruz, D. M. V., Lima, G. V., Oliveira, G. P., Souza, M. C. M., Fechine, P. B. A., Mattos, M. C., Fonseca, A. M., & Santos, J. C. S. (2022). Taguchi design-assisted co-immobilization of lipase A and B from Candida antarctica onto chitosan: Characterization, kinetic resolution application, and docking studies. Chem. Eng. Res. Des., 177, 223–244.

    Article  Google Scholar 

  15. Lima, P., Silva, R. M. D., Neto, C., Silva, N., Souza, J., Nunes, Y. L., & Santos, J. C. S. (2021). An overview on the conversion of glycerol to value-added industrial products via chemical and biochemical routes. Biotechnol. Appl. Biochem. https://doi.org/10.1002/bab.2098

  16. Cavalcante, F., Neto, F. S., Falco, I., Souza, J., & Santos, J. (2020). Opportunities for improving biodiesel production via lipase catalysis. Fuel, 288, 119577.

    Article  Google Scholar 

  17. Valério, R. B. R., Cavalcante, A. L. G., Mota, G. F., Sousa, I. G., Souza, J. E. S., Cavalcante, F. T. T., Moreira, K. S., Falcão, I. R. A., Neto, F. S., & Santos, J. C. S. (2022). Understanding the biocatalytic potential of lipase from Rhizopus chinensis. Biointerface Res App. Chem., 12(3), 4230–4260.

    Google Scholar 

  18. Moreira, K., Oliveira, A., Júnior, L. S. D. M., Monteiro, R., & Santos, J. (2020). Lipase from Rhizomucor miehei immobilized on magnetic nanoparticles: Performance in fatty acid ethyl ester (FAEE) optimized production by the taguchi method. Front. Bioeng. Biotechnol., 8, 693.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fernandez-Lopez, L., Bartolome-Cabrero, R., Rodriguez, M. D., Santos, C., Rueda, N., & Fernandez-Lafuente, R. (2015). Stabilizing effects of cations on lipases depend on the immobilization protocol. RSC Adv., 5, 83868–83875.

    Article  CAS  Google Scholar 

  20. Rios, N. S., Neto, D., Santos, J., Fechine, P., & Gonalves, L. (2019). Comparison of the immobilization of lipase from Pseudomonas fluorescens on divinylsulfone or p-benzoquinone activated support. Int. J. Biol. Macromol., 134, 936–945.

    Article  CAS  PubMed  Google Scholar 

  21. Collu, M., Carucci, C., & Salis, A. (2020). Specific anion effects on lipase adsorption and enzymatic synthesis of biodiesel in nonaqueous media. Langmuir, 36, 9465–9471.

    Article  CAS  PubMed  Google Scholar 

  22. Xiong, J., Huang, Y. J., & Zhang, H. (2012). Lipase-catalyzed transesterification synthesis of citronellyl acetate in a solvent-free system and its reaction kinetics. Eur. Food Res. Technol., 235, 907–914.

    Article  CAS  Google Scholar 

  23. Cao, W., Cong, F., Kang, J., Zhang, S., Li, X., Wang, X., Li, P., & Yu, J. (2020). A simple room temperature-static bioreactor for effective synthesis of hexyl acetate. Green Process Synth., 9, 48–55.

    Article  Google Scholar 

  24. Yadav, G. D., & Borkar, I. V. (2009). Kinetic and mechanistic investigation of microwave-assisted lipase catalyzed synthesis of citronellyl acetate. Ind. Eng. Chem. Res., 48, 7915–7922.

    Article  CAS  Google Scholar 

  25. Hu, X., Qin, H., Hu, B., Cheng, H., Chen, L., & Qi, Z. (2019). A rate-based method for dynamic analysis and optimal design of reactive extraction: n-Hexyl acetate esterification as an example. Chinese J. Chem. Eng., 28(1), 76–83.

    Article  Google Scholar 

  26. Ou, J., Yuan, X., Liu, Y., Zhang, P., & Tang, K. (2020). Lipase from Pseudomonas cepacia immobilized into zif-8 as bio-catalyst for enantioselective hydrolysis and transesterification. Process Biochem., 102, 132–140.

    Article  Google Scholar 

  27. Cao, Y. P., Zhi, G. Y., Han, L., Chen, Q., & Zhang, D. H. (2021). Biosynthesis of benzyl cinnamate using an efficient immobilized lipase entrapped in nano-molecular cages. Food Chem., 364, 130428.

    Article  CAS  PubMed  Google Scholar 

  28. Winkler, F. K., D'Arcy, A., & Hunziker, W. (1990). Structure of human pancreatic lipase. Nature, 343, 771–774.

    Article  CAS  PubMed  Google Scholar 

  29. Silveira, R. L., Knott, B. C., Pereira, C. S., Crowley, M. F., & Beckham, G. T. (2021). Transition path sampling study of the feruloyl esterase mechanism. J. Phys. Chem. B, 125, 2018–2030.

    Article  CAS  PubMed  Google Scholar 

  30. Souza, T., Fonseca, T., Silva, J., Lima, P., & Gonalves, L. (2020). Modulation of lipase B from Candida antarctica properties via covalent immobilization on eco-friendly support for enzymatic kinetic resolution of rac-indanyl acetate. Bioproc. Biosyst. Eng., 43, 2253–2268.

    Article  Google Scholar 

  31. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Tech., 40, 1451–1463.

    Article  CAS  Google Scholar 

  32. Zhong, L., Feng, Y., Wang, G., Wang, Z., Bilal, M., Lv, H., Jia, S., & Cui, J. (2020). Production and use of immobilized lipases in/on nanomaterials: A review from the waste to biodiesel production. Int. J. Biol. Macromol., 152, 207–222.

    Article  CAS  PubMed  Google Scholar 

  33. Zahirinejad, S., Hemmati, R., Homaei, A., Dinari, A., Hosseinkhani, S., Mohammadi, S., & Vianello, F. (2021). Nano-organic supports for enzyme immobilization: Scopes and perspectives. Colloid. Surface. B., 204(4), 111774.

    Article  CAS  Google Scholar 

  34. Arana-Pea, S., Rios, N. S., Carballares, D., Gonalves, L., & Fernandez-Lafuente, R. (2021). Immobilization of lipases via interfacial activation on hydrophobic supports: Production of biocatalysts libraries by altering the immobilization conditions. Catal. Today, 362, 130–140.

    Article  Google Scholar 

  35. Mehta, J., Bhardwaj, N., Bhardwaj, S. K., Kim, K. H., & Deep, A. (2016). Recent advances in enzyme immobilization techniques: Metal-organic frameworks as novel substrates. Coordin. Chem. Rev., 322, 30–40.

    Article  CAS  Google Scholar 

  36. Verma, C., Ebenso, E. E., Quraishi, M. A., & Rhee, K. Y. (2021). Phthalocyanine, naphthalocyanine and their derivatives as corrosion inhibitors: A review. J. Mol. Liq., 334, 116441.

    Article  CAS  Google Scholar 

  37. Kurliandski, B. A., Braude, E. V., Kliachkina, A. M., Torshina, N. L., & Khokhlova, S. B. (1985). Toxicity of copper phthalocyanine., Gig. Sanit, 1, 92–93.

  38. Li, M., Hu, Q., Shan, H., Yu, W., & Xu, Z. X. (2020). Fabrication of copper phthalocyanine/reduced graphene oxide nanocomposites for efficient photocatalytic reduction of hexavalent chromium. Chemosphere, 263, 128250.

    Article  PubMed  Google Scholar 

  39. Zhou, W., Zhang, W., & Cai, Y. (2021). Laccase immobilization for water purification: A comprehensive review. Chem. Eng. J., 403, 126272.

    Article  CAS  Google Scholar 

  40. Zhong, H., Wang, K., & Chen, H. Y. (2004). Protein analysis with tetra-substituted sulfonated cobalt phthalocyanine by the technique of rayleigh light scattering, Anal. Biochem., 330(1), 37–42.

    CAS  Google Scholar 

  41. Nunes, Y. L., Menezes, F., Sousa, I., Cavalcante, A., & Santos, J. (2021). Chemical and physical chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy? Int. J. Biol. Macromol., 181, 1124–1170.

    Article  CAS  PubMed  Google Scholar 

  42. Liu, D. M., & Dong, C. (2020). Recent advances in nano-carrier immobilized enzymes and their applications. Process Biochem., 92, 464–475.

    Article  Google Scholar 

  43. Sharath, A. K., Haque, N., & Prabhu, N. P. (2020). Spontaneous lid closure and substrate-induced lid opening dynamics of human pancreatic lipase-related protein 2: A computational study. J. Mol. Struct., 1217, 128365.

    Article  CAS  Google Scholar 

  44. Fonseca, A. M., Santos, J. C. S., Souza, M. C. M., Oliveira, M. M., Colares, R. P., Lemos, T. L. G., & Braz-Filho, R. (2020). The use of new hydrogel microcapsules in coconut juice as biocatalyst system for the reaction of quinine. Ind. Crop. Prod., 145, 111890.

    Article  CAS  Google Scholar 

  45. Ghani, F., Gojzewski, H., & Riegler, H. (2015). Nucleation and growth of copper phthalocyanine aggregates deposited from solution on planar surfaces. Appl. Surf. Sci., 351, 969–976.

    Article  CAS  Google Scholar 

  46. Saik, A. Y. H., Lim, Y. Y., Stanslas, J., & Choo, W. S. (2020). Biosynthesis of quercetin palmitate esters and evaluation of their physico-chemical properties and stability. J. Am. Oil Chem. Soc., 97(9), 977–988.

    Article  CAS  Google Scholar 

  47. Jaladi, H., Katiyar, A., Thiel, S. W., Guliants, V. V., & Pinto, N. G. (2009). Effect of pore diffusional resistance on biocatalytic activity of Burkholderia cepacia lipase immobilized on SBA-15 hosts. Chem. Eng. Sci., 64, 1474–1479.

    Article  CAS  Google Scholar 

  48. Reetz, M. T., & Jiao, N. (2006). Copper-phthalocyanine conjugates of serum albumins as enantioselective catalysts in Diels-Alder reactions. Angew. Chem. Int. Ed., 45(15), 2416–2419.

    Article  CAS  Google Scholar 

  49. Farahmand, S., Ghiaci, M., & Razavizadeh, J. S. (2019). Copper phthalocyanine as an efficient and reusable heterogeneous catalyst for direct hydroxylation of benzene to phenol under mild conditions. Inorg. Chim. Acta, 484, 174–179.

    Article  CAS  Google Scholar 

  50. Castro, K. A. D. F., Figueira, F., Paz, F. A. A., Tomé, J. P. C., Silva, R. S., Nakagaki, S., Neves, M. G. P. M. S., Cavaleiro, J. A. S., & Simões, M. M. Q. (2019). Copper-phthalocyanine coordination polymer as a reusable catechol oxidase biomimetic catalyst. Dalton T., 48(23), 8144–8152.

    Article  CAS  Google Scholar 

  51. Sanchez, A., Cruz, J., Rueda, N., Santos, J. C. S., Torres, R., Ortiz, C., Villalonga, R., & Lafuente, R. F. (2016). Inactivation of immobilized trypsin under dissimilar conditions produces trypsin molecules with different structures. RSC Adv., 6(33), 27329–27334.

    Article  CAS  Google Scholar 

  52. Pinheiro, M. P., Rios, N. S., Thiago, D., Francisco, D., Rodríguez-Castellón, E., Fernandez-Lafuente, R., Mattos, M. C., Santos, J. C. S., & Gonçalvesa, L. R. B. (2018). Kinetic resolution of drug intermediates catalyzed by lipase B from Candida antarctica immobilized on immobead-350. Biotechnol. Prog., 34(4), 878–889.

    Article  CAS  PubMed  Google Scholar 

  53. Manoel, E. A., Pinto, M., Santos, J. D., Tacias-Pascacio, V. G., Freire, D., Pinto, J. C., & Fernandez-Lafuente, R. (2016). Design of a core–shell support to improve lipase features by immobilization. RSC Adv., 6(67), 62814–62824.

    Article  CAS  Google Scholar 

  54. Bhuiyan, A. H., Nagakawa, T., Zakaria, M., & Nakane, K. (2021). Utilization of polyvinyl butyral-zirconium alkoxide hybrid hollow tube as an enzyme immobilization carrier. J. Mater. Sci., 56, 1–11.

    Article  Google Scholar 

  55. Solanki, K., & Gupta, M. N. (2011). A chemically modified lipase preparation for catalyzing the transesterification reaction in even highly polar organic solvents. Bioorg. Med. Chem. Lett., 21(10), 2934–2936.

    Article  CAS  PubMed  Google Scholar 

  56. Wang, X., Wang, X., Cong, F., Xu, Y., Kang, J., Zhang, Y., Zhou, M., Xing, K., Zhang, G., & Pan, H. (2018). Synthesis of cinnamyl acetate catalysed by highly reusable cotton-immobilized Pseudomonas fluorescens lipase. Biocatal. Biotransfor., 36(4), 332–339.

    Article  CAS  Google Scholar 

  57. Galvão, W. S., Pinheiro, B. B., Golçalves, L. R. B., Mattos, M. C., Fonseca, T. S., Regis, T., Zampieri, D., Santos, J. C. S., Costa, L. S., Correa, M. A., Bohn, F., & Fechine, P. B. A. (2018). Novel nanohybrid biocatalyst: application in the kinetic resolution of secondary alcohols. J. Mater. Sic., 53, 14121–14137.

    Article  Google Scholar 

  58. Yan, Q., Li, L., Cong, F., Liu, H., Zhou, X., Xing, K., Kong, X., & Zhao, R. (2015). Catalyzed synthesis of hexyl acetate in immobilized lipase bioreactor. Sci. Techno. Food Ind., 36(9), 171–174.

    CAS  Google Scholar 

  59. Wang, S., Wang, S., Cong, F., Hu, X., Xing, K., Wang, Y., & Zhang, Y. (2015). Polyacrylic resin mediated catalysis of Pseudomonas cepacia lipase, Food Sc. Technol., 40(10), 211–215.

    CAS  Google Scholar 

  60. Lei, L., Bai, Y., Li, Y., Yi, L., Yang, Y., & Xia, C. (2009). Study on immobilization of lipase onto magnetic microspheres with epoxy groups. J. Magn. Magn. Mater., 321, 252–258.

    Article  CAS  Google Scholar 

  61. Shieh, C. J., & Chang, S. W. (2001). Optimized synthesis of lipase-catalyzed hexyl acetate in n-hexane by response surface methodology. J. Agric. Food Chem., 49, 1203–1207.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key R & D Program of China (2019YFC1605305), the Key Project of Tianjin Natural Science Foundation (18JCZDJC97800), the Technical System of Freshwater Aquaculture Industry in Tianjin (ITTFRS2021000), the Open Fund of Tianjin Key Lab of Aquatic Ecology and Aquaculture (TJAE201802).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by Xinran Liu (65), Mengyao Han (10), Liwang Zhang (10), Zhongli Wang (5), and Lu Jiang (5) and Bingqian Liu (5). Analysis was performed by Xinran Liu (30), Fangdi Cong (30), Shulin Zhang (10), Wei Yang (10), Yongpeng Su (5), Tao Li (5), Yingchao Wang (5), and Daying Liu (5). The first draft of the manuscript was written by Fangdi Cong, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fangdi Cong.

Ethics declarations

Ethics Approval

N/A

Consent to Participate

N/A

Consent for Publication

We declare that the information in this manuscript has not been published elsewhere nor is it under consideration by any other journal. Furthermore, it is the consensus of all authors to submit this manuscript for possible publication in ABB

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Cong, F., Han, M. et al. Copper Phthalocyanine Improving Nonaqueous Catalysis of Pseudomonas cepacia Lipase for Ester Synthesis. Appl Biochem Biotechnol 196, 1786–1802 (2024). https://doi.org/10.1007/s12010-023-04339-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04339-7

Keywords

Navigation