Skip to main content

Advertisement

Log in

Biohythane: a Potential Biofuel of the Future

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Today, the world is becoming more dependent on fossil fuels. The major drawbacks of these non-renewable energy resources include an extreme environmental pollution and an extinction threat. Several technologies including microalgal biodiesel production, biomass gasification, and bioethanol production have been explored for the generation of renewable energy especially, biofuels. One such promising research has been carried out in the generation of biohythane which has the potential to become an alternative fuel to the existing non-renewable ones. It has been reported that biohydrogen can be produced from organic wastes or agricultural feedstocks with the help of acidogens. Dark fermentation can be carried out by acidogens to produce biohydrogen under anaerobic conditions by utilizing lignocellulosic biomass or sugarcane feedstocks in the absence of light. The spent medium contains volatile short-chain fatty acids like acetate, butyrate, and propionate that can serve as substrates for acetogenesis followed by methane biosynthesis by methanogens. Therefore, the sequential two-stage anaerobic digestion (AD) involves a production of biohydrogen followed by the biosynthesis of methane. This combined process is termed as a single eponym “Biohythane” (hydrogen + methane). Several studies have demonstrated about the effectiveness of biofuel, and it is believed to have a greater energy recovery, environmental friendliness, and shorter fermentation time. Biohythane can serve as an alternative future green biofuel and solve the present energy crisis in India as well as the entire world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All the information is taken from several research papers and review papers on Biohythane for our review work.

References

  1. Ali, Mahmoud M., et al. (2022) “Impacts of molybdate and ferric chloride on biohythane production through two-stage anaerobic digestion of sulfate-rich hydrolyzed tofu processing residue.” Bioresource Technology 127239.

  2. Bauer, C. G., & Forest, T. W. (2001). Effect of hydrogen addition on the performance of methane-fueled vehicles. Part I: Effect on S.I. engine performance. International Journal of Hydrogen Energy, 26, 55–70.

    Article  CAS  Google Scholar 

  3. Bolzonella, David, et al. (2018). Recent developments in biohythane production from household food wastes: A review. Bioresource technology, 257, 311–319.

    Article  CAS  PubMed  Google Scholar 

  4. Cavinato, C., Fatone, F., Bolzonella, D., & Pavan, P. (2010). Thermophilic anaerobic co-digestion of cattle manure with agro-wastes and energy crops: Comparison of pilot and full scale experiences. Bioresour Technol, 101, 545e50.

    Article  Google Scholar 

  5. Cavinato, C., Giuliano, A., Bolzonella, D., Pavan, P., & Cecchi, F. (2012). Biohythane production from food waste by dark fermentation coupled with anaerobic digestion process: A long-term pilot scale experience. International Journal of Hydrogen Energy, 37(15), 11549e55.

    Article  Google Scholar 

  6. Cavinato, C., Bolzonella, D., Pavan, P., Fatone, F., & Cecchi, F. (2013). Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot-and fullscale reactors. Renew Energy, 55, 26e05.

    Article  Google Scholar 

  7. Cooney, M., Maynard, N., Cannizzaro, C., & Benemann, J. (2007). Two-phase anaerobic digestion for production of hydrogen–methane mixtures. Bioresource Technology, 98, 2641–2651.

    Article  CAS  PubMed  Google Scholar 

  8. Corneli, E., Dragoni, F., Adessi, A., Philippis, R. D., Bonari, E., & Ragaglini, G. (2016). Energy conversion of biomass crops and agroindustrial residues by combined bio-hydrogen/biomethane system and anaerobic digestion. Bioresource Technology, 211, 509e18.

    Article  Google Scholar 

  9. Chen, C. Y., Yeh, K. L., Lo, Y. C., Wang, H. M., & Chang, J. S. (2010). Engineering strategies for the enhanced photo-H2 production using effluents dark fermentation processes as substrate. International Journal of Hydrogen Energy, 35, 13356–13364.

    Article  CAS  Google Scholar 

  10. Chen, L., Xing, L., & Han, L. (2009). Renewable energy from agro-residues in China: Solid biofuels and biomass briquetting technology. Renewable and Sustainable Energy Reviews, 13, 2689–2695.

    Article  Google Scholar 

  11. Chu, C.-F., Li, Y.-Y., Xu, K.-Q., Ebie, Y., Inamori, Y., & Kong, H.-N. (2008). A pH-and temperature-phased two-stage process for hydrogen and methane production from food waste. International Journal of Hydrogen Energy, 33, 4739–4746.

    Article  CAS  Google Scholar 

  12. Chung, F., Li, Y. Y., Xu, K. Q., Ebie, Y., Inamori, Y., & Kong, H. N. (2008). A pH and temperature-phased two-stage process for hydrogen and methane production from food waste. International Journal of Hydrogen Energy, 33, 4739e46.

    Google Scholar 

  13. Dincer, I., & Acar, C. (2015). Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy, 40(34), 11094e111.

    Article  Google Scholar 

  14. Deheri, Chinmay, & Acharya, Saroj Kumar. (2022). Purified biohythane (biohydrogen+biomethane) production from food waste using CaO2+ CaCO3 and NaOH as additives. International Journal of Hydrogen Energy, 47(5), 2862–2873.

    Article  CAS  Google Scholar 

  15. Eden, 2010. 2010 Eden Annual Report. Available from: Elbeshbishy, E., Nakhla, G., 2011. Comparative study of the effect of ultrasonication on the anaerobic biodegradability of food waste in single and two-stage systems. Bioresource Technology 102, 6449–6457.

  16. Fulton, J., Marmaro, R. W., & Egan, G. J. (2010). System for producing a hydrogen enriched fuel. U.S. Patent No. 7,721,682.

  17. Goberna, M., Simón, P., Hernández, M. T., & García, C. (2018). Prokaryotic communities and potential pathogens in sewage sludge: Response to wastewaster origin, loading rate and treatment technology. Science of the Total Environment, 615, 360–368.

    Article  CAS  PubMed  Google Scholar 

  18. Hans, M., & Kumar, S. (2019). Biohythane production in two-stage anaerobic digestion system. International Journal of Hydrogen Energy, 44(32), 17363–17380.

    Article  CAS  Google Scholar 

  19. Han, W., Fang, J., Liu, Z., & Tang, J. (2016). Techno-economic evaluation of a combined bioprocess for fermentative hydrogen production from food waste. Bioresource Technology, 202, 107e12.

    Article  Google Scholar 

  20. Han, W., Liu, Z., Fang, J., Huang, J., Zhao, H., & Li, Y. (2016). Technoeconomic analysis of dark fermentative hydrogen production from molasses in a continuous mixed immobilized sludge reactor. Journal of Cleaner Production, 127, 567e72.

    Article  Google Scholar 

  21. Hijazi, O., Munro, S., Zerhusen, B., & Effenberger, M. (2016). Review of life cycle assessment for biogas production in Europe. Renewable and Sustainable Energy Reviews, 54, 1291–1300.

    Article  CAS  Google Scholar 

  22. Ho, S.-H., Chen, Y.-D., Chang, C.-Y., Lai, Y.-Y., Chen, C.-Y., Kondo, A., Ren, N.-Q., & Chang, J.-S. (2017). Feasibility of CO2 mitigation and carbohydrate production by microalga Scenedesmus obliquus CNW-N used for bioethanol fermentation under outdoor conditions: Effects of seasonal changes. Biotechnology for Biofuels, 10, 1.

    Article  Google Scholar 

  23. Jang, S., Kim, D. H., Yun, Y. M., Lee, M. K., Moon, C., Kang, W. S., et al. (2015). Hydrogen fermentation of food waste by alkali-shock pretreatment: Microbial community analysis and limitation of continuous operation. Bioresource Technology, 186, 215e22.

    Article  Google Scholar 

  24. Kabir, S. B., et al. (2022). “Progress in biohythane production from microalgae-wastewater sludge co-digestion: An integrated biorefinery approach.” Biotechnology Advances 107933.

  25. Karadag, D., & Puhakka, J. A. (2010). Enhancement of anaerobic hydrogen production by iron and nickel. International Journal of Hydrogen Energy, 35, 8554–8560.

    Article  CAS  Google Scholar 

  26. Keltjens, J. T., & van der Drift, C. (1986). Electron transfer reactions in methanogens. FEMS Microbiology Reviews, 87, 327–332.

    Article  Google Scholar 

  27. Keltjens, J. T., te Brommelstroet, B. W., Kengen, S. W. M., van der Drift, C., & Vogels, G. D. (1990). 5,6,7,8 tetrahydromethanopterin-dependent enzymes involved in methanogenesis. FEMS Microbiology Reviews, 87, 327–332.

    Article  CAS  Google Scholar 

  28. Kraemer, J. T., & Bagley, D. M. (2005). Continuous fermentative hydrogen production using a two-phase reactor system with recycle. Environmental Science and Technology, 39, 3819–3825.

    Article  CAS  PubMed  Google Scholar 

  29. Kumar, G., Bakonyi, P., Periyasamy, S., Kim, S., Nemestothy, N., & Belafi-Bak, O. K. (2015). Lignocellulose biohydrogen: practical challenges and recent progress. Renewable & Sustainable Energy Reviews, 44, 728e37.

    Article  Google Scholar 

  30. Kumar, K. Sanjay., et al. (2021). Biohythane: An emerging future fuel. Journal of Pharmaceutical Sciences and Research, 13(5), 238–246.

    CAS  Google Scholar 

  31. Kyazze, G., Dinsdale, R., Guwy, A. J., Hawkes, F. R., Premier, G. C., & Hawkes, D. L. (2007). Performance characteristics of a two-stage dark fermentative system producing hydrogen and methane continuously. Biotechnology and Bioengineering, 97, 759–770.

    Article  CAS  PubMed  Google Scholar 

  32. Lay, Chyi-How., et al. (2020). Recent trends and prospects in biohythane research: An overview. International Journal of Hydrogen Energy, 45(10), 5864–5873.

    Article  CAS  Google Scholar 

  33. Lay, J. J., Fan, K. S., Chang, J., & Ku, C. H. (2003). Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge. International Journal of Hydrogen Energy, 28, 1361–1367.

    Article  CAS  Google Scholar 

  34. Lee, Y. W., & Chung, J. (2010). Bioproduction of hydrogen from food waste by pilot-scale combined hydrogen/methane fermentation. International Journal of Hydrogen Energy, 35(21), 11746e55.

    Article  Google Scholar 

  35. Liu, Rongzhan, et al. (2022). Effect of mixing ratio and total solids content on temperature-phased anaerobic codigestion of rice straw and pig manure: Biohythane production and microbial structure. Bioresource Technology, 344, 126173.

    Article  CAS  PubMed  Google Scholar 

  36. Liu, Z., Si, B., Li, J., He, J., Zhang, C., Lu, Y., et al. (2018). Bioprocess engineering for biohythane production from low-grade waste biomass: Technical challenges towards scale up. Current Opinion in Biotechnology, 50, 25e31.

    Article  Google Scholar 

  37. Lin, C.-Y., Lay, C.-H., Sen, B., Chu, C.-Y., Kumar, G., Chen, C.-C., et al. (2012). Fermentative hydrogen production from wastewaters: A review and prognosis. International Journal of Hydrogen Energy, 37, 15632e42.

    Article  Google Scholar 

  38. Liu, Z., Zhang, C., Lu, Y., Wu, X., Wang, L., Wang, L., et al. (2013). States and challenges for high-value biohythane production from waste biomass by dark fermentation technology. Bioresource Technology, 135, 292e303.

    Article  Google Scholar 

  39. Liu, Zhidan, et al. (2013). States and challenges for high-value biohythane production from waste biomass by dark fermentation technology. Bioresource Technology, 135, 292–303.

    Article  CAS  PubMed  Google Scholar 

  40. Ljunggren, M., & Zacchi, G. (2010). Techno-economic analysis of a two-step biological process producing hydrogen and methane. Bioresource Technology, 101, 7780–7788.

    Article  CAS  PubMed  Google Scholar 

  41. McAnulty, M. J. G., Poosarla, V., & Kim, K.-Y. (2017). Jasso-Cha´ vez R, Logan BE, Wood TK: Electricity from methane by reversing methanogenesis. Nature Communications, 8, 15419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Micolucci, F., Gottardo, M., Cavinato, C., Pavan, P., & Bolzonella, D. (2016). Mesophilic and thermophilic anaerobic digestion of the liquid fraction of pressed biowaste for high energy yields recovery. Waste Management, 48(2016), 227–235.

    Article  CAS  PubMed  Google Scholar 

  43. Micolucci, F., et al. (2014). Automatic process control for stable bio-hythane production in two-phase thermophilic anaerobic digestion of food waste. International Journal of Hydrogen Energy, 39(31), 17563–17572.

    Article  CAS  Google Scholar 

  44. Nath, K., & Das, D. (2008). Effect of light intensity and initial pH during hydrogen production by an integrated dark and photofermentation process. International Journal of Hydrogen Energy, 34, 7497–7501.

    Article  Google Scholar 

  45. Nandi, R., & Sengupta, S. (1998). Microbial production of hydrogen: An overview. Critical Reviews in Microbiology, 24, 61e84.

    Article  Google Scholar 

  46. Nkemka, V. N., Gilroyed, B., Yanke, J., Gruninger, R., Vedres, D., McAllister, T., et al. (2015). Bioaugmentation with an anaerobic fungus in a two-stage process for bio-hydrogen and biogas production using corn silage and cattail. Bioresource Technology, 185, 79e88.

    Article  Google Scholar 

  47. Pakarinen, O. M., Tahti, H. P., & Rintala, J. A. (2009). One-stage H2 and CH4 and two-stage H2þCH4 production from grass silage and from solid and liquid fractions of NaOH pre-treated grass silage. Biomass Bioenergy, 33, 1419e27.

    Article  Google Scholar 

  48. Porpatham, E., Ramesh, A., & Nagalingam, B. (2007). Effect of hydrogen addition on the performance of a biogas fuelled spark ignition engine. International Journal of Hydrogen Energy, 32, 2057e65.

    Article  Google Scholar 

  49. Roy, S., & Das, D. (2016). Biohythane production from organic wastes: Present state of art. Environmental Science and Pollution Research, 23, 9391e410.

    Article  Google Scholar 

  50. Ren, N.-Q., Zhao, L., Chen, C., Guo, W.-Q., & Cao, G.-L. (2016). A review on bioconversion of lignocellulosic biomass to H 2: Key challenges and new insights. Bioresource Technology, 215, 92–99.

    Article  CAS  PubMed  Google Scholar 

  51. Schievano, A., Sciarria, T. P., Gao, Y. C., Scaglia, B., Salati, S., Zanardo, M., Quiao, W., Dong, R., & Adani, F. (2016). Dark fermentation, anaerobic digestion and microbial fuel cells: An integrated system to valorize swine manure and rice bran. Waste Management, 56, 519–529.

    Article  CAS  PubMed  Google Scholar 

  52. Schievano, A., Tenca, A., Lonati, S., Manzini, E., & Adani, F. (2014). Can twostage instead of one-stage anaerobic digestion really increase energy recovery from biomass? Applied Energy, 124, 335e42.

    Article  Google Scholar 

  53. Seghezzo, L., Zeeman, G., van Liel, J. B., Hamelers, H. V. M., & Lettinga, G. (1998). A review: The anaerobic treatment of sewage in UASB and EGSB reactors. Bioresource Technology, 65, 175–190.

    Article  CAS  Google Scholar 

  54. Serrano-Meza, A., et al. (2022). Hydrogen and methane production from tequila vinasses in a novel hybrid reactor containing biofilm and suspended biomass. BioEnergy Research 1–16.

  55. Seengenyoung, J., Mamimin, C., Prasertsan, P., O-Thong, S. (2018). Pilot-scale of biohythane production from palm oil mill effluent by two-stage thermophilic anaerobic Fermentation. Int J Hydrogen Energy 1e9. https://doi.org/10.1016/j.ijhydene.2018.08.021.

  56. Sompong, O., Mamimin, C., & Prasertsan, P. (2018). Biohythane production from organic wastes by two-stage anaerobic fermentation technology. Advances in Biofuels and Bioenergy 83.

  57. Sompong, O., Suksong, W., Promnuan, K., Thipmunee, M., Mamimin, C., & Prasertsan, P. (2016). Two-stage thermophilic fermentation and mesophilic methanogenic process for biohythane production from palm oil mill effluent with methanogenic effluent recirculation for pH control. International Journal of Hydrogen Energy, 41, 21702e12.

    Google Scholar 

  58. Si, B.-C., Li, J.-M., Zhu, Z.-B., Zhang, Y.-H., Lu, J.-W., Shen, R.-X., et al. (2016). Continuous production of biohythane from hydrothermal liquefied cornstalk biomass via two-stage high-rate anaerobic reactors. Biotechnology for Biofuels, 9, 254.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Si, B., Li, J., Li, B., Zhu, Z., Shen, R., Zhang, Y., & Liu, Z. (2015). The role of hydraulic retention time on controlling methanogenesis and homoacetogenesis in biohydrogen production using upflow anaerobic sludge blanket (UASB) reactor and packed bed reactor (PBR). International Journal of Hydrogen Energy, 40, 11414–11421.

    Article  CAS  Google Scholar 

  60. Si, B., Liu, Z., Zhang, Y., Li, J., Xing, X.-H., Li, B., Duan, N., & Lu, H. (2015). Effect of reaction mode on biohydrogen production and its microbial diversity. International Journal of Hydrogen Energy, 40, 3191–3200.

    Article  CAS  Google Scholar 

  61. van Beelen, P., Labro, J. F. A., Keltjens, J. T., Geerts, W. J., Vogels, G. D., Laarhoven, W. H., Guijt, W., & Haasnoot, C. A. G. (1984). Derivatives of methanopterin, a coenzyme involved in methanogenesis. European Journal of Biochemistry, 139, 359–365.

    Article  PubMed  Google Scholar 

  62. Wang, X., & Zhao, Y.-C. (2009). A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process. International Journal of Hydrogen Energy, 34, 245e54.

    Google Scholar 

  63. Wenzel, J., Fuentes, L., Cabezas, A., & Etchebehere, C. (2017). Microbial fuel cell coupled to biohydrogen reactor: A feasible technology to increase energy yield from cheese whey. Bioprocess and Biosystems Engineering, 40, 807–819.

    Article  CAS  PubMed  Google Scholar 

  64. Xie, B., Cheng, J., Zhou, J., Song, W., & Cen, K. (2008). Cogeneration of hydrogen and methane from glucose to improve energy conversion efficiency. International Journal of Hydrogen Energy, 33, 5006–5011.

    Article  CAS  Google Scholar 

  65. Xue, C., Zhao, J., Chen, L., Yang, S.-T., & Bai, F. (2017). Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum. Biotechnology Advances, 35, 310–322.

    Article  CAS  PubMed  Google Scholar 

  66. Yang, G., Zhang, G. M., & Wang, H. C. (2015). Current state of sludge production, management, treatment and disposal in China. Water Research, 78(60–73), 43. Yoon Y., Lee S., Kim K.H, Jeon T., Shin S., 201.

    Google Scholar 

  67. Yeshanew, M. M., Frunzo, L. B., Pirozzi, F., Lens, P. N. L., & Esposito, G. (2016). Production of biohythane from food waste via an integrated system of continuously stirred tank and anaerobic fixed bed reactors. Bioresource Technology, 220, 312e22.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasish Kar.

Ethics declarations

Ethics Approval

Not applicable as no animal study was done.

Consent to Participate

Not Applicable.

Consent for Publication

We, the undersigned, provide our consent to the Applied Biochemistry and Biotechnology to publish.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Kar, D. Biohythane: a Potential Biofuel of the Future. Appl Biochem Biotechnol 196, 2957–2975 (2024). https://doi.org/10.1007/s12010-022-04291-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04291-y

Keywords

Navigation