Skip to main content

Advertisement

Log in

L-Cys-Assisted Conversion of H2/CO2 to Biochemicals Using Clostridium ljungdahlii

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Carbon fixation and conversion based on Clostridium ljungdahlii have great potential for the sustainable production of biochemicals (i.e., 2,3-butanediol, acetic acid, and ethanol). Here, the effects of reducing agents on the production of biochemicals from H2/CO2 using C. ljungdahlii were studied. It was found that the element S and reducing power could significantly affect the production of biochemicals, and cysteine (Cys) was better than sodium sulfide for the production of biochemicals, especially for the production of 2,3-butanediol. Moreover, comparing to the control (i.e., without the addition of Cys), the gene expression profiles indicated that the fdh and adhE1 were significantly upregulated with the addition of Cys, which involved in pathways of the CO2 fixation and ethanol production. Therefore, the irreplaceability of Cys on the production of biochemicals was both caused by its utilization as a reducing agent and its effect on the metabolic pathway. Finally, compared to the control, the production of 2,3-butanediol was increased by 2.17 times under the addition of 1.7 g/L Cys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Allwood, J. M., Cullen, R. M., & Milford, R. L. (2010). Options for achieving a 50% cut in industrial carbon emissions by 2050. Environmental Science & Technology, 44, 1888–1894.

    Article  CAS  Google Scholar 

  2. Salehizadeh, H., Yan, N., & Farnood, R. (2020). Recent advances in microbial CO2 fixation and conversion to value-added products. Chemical Engineering Journal, 390, 124584.

    Article  CAS  Google Scholar 

  3. Zhang, L., Zhao, R., Jia, D., Jiang, W., & Gu, Y. (2020). Engineering Clostridium ljungdahlii as the gas-fermenting cell factory for the production of biofuels and biochemicals. Current Opinion in Chemical Biology, 59, 54–61.

    Article  CAS  Google Scholar 

  4. Abrini, J., Naveau, H., & Nyns, E. J. (1994). Clostridium autoethanogenum , sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Archives of Microbiology, 161, 345–351.

    Article  CAS  Google Scholar 

  5. Chang, I. S., Kim, B. H., Lovitt, R. W., & Bang, J. S. (2001). Effect of CO partial pressure on cell-recycled continuous CO fermentation by Eubacterium limosum KIST612. Process Biochemistry, 37, 411–421.

    Article  CAS  Google Scholar 

  6. Henstra, A. M., Sipma, J., & Rinzema, A. J. M. (2007). Microbiology of synthesis gas fermentation for biofuel production. Current Opinion in Biotechnology, 18, 200–206.

    Article  CAS  Google Scholar 

  7. Kundiyana, D. K., Wilkins, M. R., Maddipati, P., & Huhnke, R. L. (2011). Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by Clostridium ragsdalei. Bioresource Technology, 102, 5794–5799.

    Article  CAS  Google Scholar 

  8. Shen, Y., Brown, R. C., & Wen, Z. (2017). Syngas fermentation by Clostridium carboxidivorans P7 in a horizontal rotating packed bed biofilm reactor with enhanced ethanol production. Applied Energy, 187, 585–594.

    Article  CAS  Google Scholar 

  9. Li, D., Meng, C., Wu, G., Xie, B., Han, Y., Guo, Y., Song, C., Gao, Z., & Huang, Z. (2018). Effects of zinc on the production of alcohol by Clostridium carboxidivorans P7 using model syngas. Journal of Industrial Microbiology & Biotechnology, 45, 61–69.

    Article  CAS  Google Scholar 

  10. Oliveira, L., Rhrenbach, S., Holzmüller, V., & Weuster-Botz, D. (2022). Continuous sulfide supply enhanced autotrophic production of alcohols with Clostridium ragsdalei. Bioresources and Bioprocessing, 9, 1–13.

    Article  Google Scholar 

  11. Phillips, J. R., Atiyeh, H. K., Tanner, R. S., Torres, J. R., Saxena, J., Wilkins, M. R., & Huhnke, R. L. (2015). Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: Medium development and culture techniques. Bioresource Technology, 190, 114–121.

    Article  CAS  Google Scholar 

  12. Zhu, H. F., Liu, Z. Y., Zho, X., Yi, J. H., Lun, Z. M., Wang, S. N., & Tang, W. Z. (2020). Energy conservation and carbon flux distribution during fermentation of CO or H2/CO2 by Clostridium ljungdahlii. Frontiers in Microbiology, 11, 416.

    Article  Google Scholar 

  13. Diender, M., Stams, A., & Sousa, D. Z. (2016). Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas. Biotechnology for Biofuels, 9, 82.

    Article  Google Scholar 

  14. Guo, Y., Xu, J., Zhang, Y., Xu, H., Yuan, Z., & Li, D. (2010). Medium optimization for ethanol production with Clostridium autoethanogenum with carbon monoxide as sole carbon source. Bioresource Technology, 101, 8784–8789.

    Article  CAS  Google Scholar 

  15. Saxena, J., & Tanner, R. S. (2011). Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei. Journal of Industrial Microbiology & Biotechnology, 38, 513–521.

    Article  CAS  Google Scholar 

  16. Saxena, J., & Tanner, R. S. (2012). Optimization of a corn steep medium for production of ethanol from synthesis gas fermentation by Clostridium ragsdalei. World Journal of Microbiology & Biotechnology, 28, 1553–1561.

    Article  CAS  Google Scholar 

  17. Panneerselvam, A., Wilkins, M. R., Delorme, M. J. M., Atiyeh, H. K., & Huhnke, R. L. (2010). Effects of various reducing agents on syngas fermentation by Clostridium ragsdalei. Biological Engineering, 2, 135–144.

    Article  Google Scholar 

  18. Mann, M., Munch, G., Regestein, L., & Rehmann, L. (2020). Cultivation strategies of Clostridium autoethanogenum on xylose and carbon monoxide combination. ACS Sustainable Chemistry & Engineering, 8, 2632–2639.

    Article  CAS  Google Scholar 

  19. Jie, G., Atiyeh, H. K., Phillips, J. R., Wilkins, M. R., & Huhnke, R. L. (2013). Development of low cost medium for ethanol production from syngas by Clostridium ragsdalei. Bioresource Technology, 147, 508–515.

    Article  Google Scholar 

  20. Thi, H. N., Park, S., Li, H., & Kim, Y. K. (2020). Medium compositions for the improvement of productivity in syngas fermentation with Clostridium autoethanogenum. Biotechnology and Bioprocess Engineering, 25, 493–501.

    Article  CAS  Google Scholar 

  21. Sun, X., Atiyeh, H. K., Kumar, A., & Zhang, H. (2018). Enhanced ethanol production by Clostridium ragsdalei from syngas by incorporating biochar in the fermentation medium. Bioresource Technology, 247, 291–301.

    Article  CAS  Google Scholar 

  22. Cotter, J. L., Chinn, M. S., & Grun, A. M. (2009). Ethanol and acetate production by Clostridium ljungdahlii and Clostridium autoethanogenum using resting cells. Bioprocess & Biosystems Engineering, 32, 369–380.

    Article  CAS  Google Scholar 

  23. Kundiyana, D. K., Huhnke, R. L., Maddipati, P., Atiyeh, H. K., & Wilkins, M. R. (2010). Feasibility of incorporating cotton seed extract in Clostridium strain P11 fermentation medium during synthesis gas fermentation. Bioresource Technology, 101, 9673–9680.

    Article  CAS  Google Scholar 

  24. Maddipati, P., Atiyeh, H. K., Bellmer, D. D., & Huhnke, R. L. (2011). Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract. Bioresource technology, 102, 6494–6501.

    Article  CAS  Google Scholar 

  25. Sun, X., Atiyeh, H. K., Kumar, A., Zhang, H., & Tanner, R. S. (2018). Biochar enhanced ethanol and butanol production by Clostridium carboxidivorans from syngas. Bioresource Technology, 265, 128–138.

    Article  CAS  Google Scholar 

  26. He, A. Y., Yin, C. Y., Xu, H., Kong, X. P., Xue, J. W., Zhu, J., Jiang, M., & Wu, H. (2016). Enhanced butanol production in a microbial electrolysis cell by Clostridium beijerinckii IB4. Bioprocess and Biosystems Engineering, 39, 245–254.

    Article  CAS  Google Scholar 

  27. Du, Y., Jiang, W., Yu, M., Tang, I. C., & Yang, S. T. (2015). Metabolic process engineering of Clostridium tyrobutyricum Δack–adhE2 for enhanced n-butanol production from glucose: Effects of methyl viologen on NADH availability, flux distribution, and fermentation kinetics. Biotechnology & Bioengineering, 112, 705–715.

    Article  CAS  Google Scholar 

  28. Hu, P., Jacobsen, L. T., Horton, J. G., & Lewis, R. S. (2010). Sulfide assessment in bioreactors with gas replacement. Biochemical Engineering Journal, 49, 429–434.

    Article  CAS  Google Scholar 

  29. Cao, W. F., Luo, J. Q., Zhao, J., Qiao, C. S., Ding, L. H., Qi, B. K., Su, Y., & Wan, Y. H. (2012). Intensification of β-poly(L-malic acid) production by Aureobasidium pullulans ipe-1 in the late exponential growth phase. Journal of Industrial Microbiology & Biotechnology, 39, 1073–1080.

    Article  CAS  Google Scholar 

  30. Chandgude, V., Välisalmi, T., Linnekoski, J., Granström, T., Pratto, B., Eerikäinen, T., Jurgens, G., & Bankar, S. (2021). Reducing agents assisted fed-batch fermentation to enhance ABE yields. Energy Conversion and Management, 227, 113627.

    Article  CAS  Google Scholar 

  31. Trachootham, D., Lu, W., Ogasawara, M., Nilsa, R. D., & Huang, P. (2008). Redox regulation of cell survival. Antioxidants & redox signaling, 10, 1343–1374.

    Article  CAS  Google Scholar 

  32. Infantes, A., Kugel, M., & Neumann, A. (2020). Evaluation of media components and process parameters in a sensitive and robust fed-batch syngas fermentation system with Clostridium ljungdahlii. Fermentation, 6, 61.

    Article  CAS  Google Scholar 

  33. Xie, B. T., Liu, Z. Y., Tian, L., Li, F. L., & Chen, X. H. (2015). Physiological response of Clostridium ljungdahlii DSM 13528 of ethanol production under different fermentation conditions. Bioresource technology, 177, 302–307.

    Article  CAS  Google Scholar 

  34. Yang, Y., Deng, T., Cao, W., Shen, F., Liu, S., Zhang, J., Liang, X., & Wan, Y. (2022). Effectively converting cane molasses into 2,3-butanediol using Clostridium ljungdahlii by an integrated fermentation and membrane separation process. Molecules, 27, 954.

    Article  CAS  Google Scholar 

  35. Kim, D., Yoo, S., Kim, M., Ko, J., Um, Y., & Oh, M. (2020). Improved 2,3-butanediol yield and productivity from lignocellulose biomass hydrolysate in metabolically engineered Enterobacter aerogenes. Bioresource Technology, 309, 123386.

    Article  CAS  Google Scholar 

  36. Ji, X. J., He, H., & Ouyang, P. K. (2011). Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnology Advances, 29, 351–364.

    Article  CAS  Google Scholar 

  37. Tinco, D., Borschiver, S., Coutinho, P. L., & Freire, D. (2020). Technological development of the bio-based 2,3-butanediol process. Biofuels, Bioproducts and Biorefining, 2, 1–20.

    Google Scholar 

  38. Park, J., & Choi, Y. (2017). Cofactor engineering in cyanobacteria to overcome imbalance between NADPH and NADH: A mini review. Frontiers of Chemical Science and Engineering, 11, 66–71.

    Article  CAS  Google Scholar 

  39. Meng, H., Liu, P., Sun, H., Cai, Z., Zhou, J., Lin, J., & Li, Y. (2016). Engineering a d-lactate dehydrogenase that can super-efficiently utilize NADPH and NADH as cofactors. Scientific Reports, 6, 24887.

    Article  CAS  Google Scholar 

  40. Han, S., Gao, X. Y., Ying, H. J., & Zhou, C. (2016). NADH gene manipulation for advancing bioelectricity in Clostridium ljungdahlii microbial fuel cells. Green Chemistry, 18, 2473.

    Article  CAS  Google Scholar 

  41. Liu, C. G., Qin, J. C., & Lin, Y. H. (2017). Fermentation and redox potential. Fermentation Processes, License In tech, Chapter, 2, 23–41.

    Google Scholar 

  42. Aklujkar, M., Leang, C., Shrestha, P. M., Shrestha, M., & Lovley, D. R. (2017). Transcriptomic profiles of Clostridium ljungdahlii during lithotrophic growth with syngas or H2 and CO2 compared to organotrophic growth with fructose. Scientific Reports, 7, 13135.

    Article  Google Scholar 

  43. Qu, Y. Y., Guo, W. Q., Ding, J., & Ren, N. Q. (2012). Effect of l-cysteine on continuous fermentative hydrogen production. Applied Mechanics & Materials, 178-181, 406–410.

    Article  CAS  Google Scholar 

  44. Mohammadi, M., Mohamed, A., Najafpour, G., Younesi, H., & Uzir, M. (2016). Clostridium ljungdahlii for production of biofuel from synthesis gas. Energy Sources, Part A: recovery, utilization, and environmental Effects, 38, 1–8.

    Article  Google Scholar 

  45. Tan, Y., Liu, Z. Y., Liu, Z., & Li, F. L. (2015). Characterization of an acetoin reductase/2,3-butanediol dehydrogenase from Clostridium ljungdahlii DSM 13528. Enzyme and Microbial Technology, 79-80, 1–7.

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support from the Beijing Natural Science Foundation, China (No. 5182025); the Fundamental Research Funds for the Public Research Institutes of Chinese Academy of Inspection and Quarantine (No. 2020JK004); the National Natural Science Foundation of China, China (No. 21406240); and the National High Technology Research and Development Program of China (Nos. 2015AA021002 and 2014AA021005) .

Author information

Authors and Affiliations

Authors

Contributions

YY carried out the experiment and analyzed data. WC (Weifeng Cao) conceived and designed research. FS contributed new reagents or analytical tools. QL and YW conducted experiments. WC and YY wrote the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Weifeng Cao or Xinquan Liang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors consent to publish the manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Cao, W., Shen, F. et al. L-Cys-Assisted Conversion of H2/CO2 to Biochemicals Using Clostridium ljungdahlii. Appl Biochem Biotechnol 195, 844–860 (2023). https://doi.org/10.1007/s12010-022-04174-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04174-2

Keywords

Navigation