Skip to main content

Advertisement

Log in

Biofilm—a Syntrophic Consortia of Microbial Cells: Boon or Bane?

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biofilm is the conglomeration of microbial cells which is associated with a surface. In the recent times, the study of biofilm has gained popularity and vivid research is being done to know about the effects of biofilm and that it consists of many organisms which are symbiotic in nature, some of which are human pathogens. Here, in this study, we have discussed about biofilms, its formation, relevance of its presence in the biosphere, and the possible remediations to cope up with its negative effects. Since removal of biofilm is difficult, emphasis has been made to suggest ways to prevent biofilm formation and also to devise ways to utilize biofilm in an economically and environment-friendly method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sentenac, H., Loyau, A., Leflaive, J., & Schmeller, D. S. (2022). The significance of biofilms to human, animal, plant and ecosystem health. Functional Ecology, 36(2), 294–313.

    Article  Google Scholar 

  2. O’Toole, G., Kaplan, H. B., & Kolter, R. (2000). Biofilm formation as microbial development. Annual Review of Microbiology, 54, 49–79.

    Article  PubMed  Google Scholar 

  3. Hall-Stoodley, L., Costerton, J. W., & Stoodley, P. (2004). Bacterial biofilms: From the natural environment to infectious diseases. Nature Reviews Microbiology, 2(2), 95–108.

    Article  CAS  PubMed  Google Scholar 

  4. López, D., Vlamakis, H., & Kolter, R. (2010). Biofilms. Cold Spring Harbor Perspectives in Biology, 2(7), a000398.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lorite, G. S., Rodrigues, C. M., De Souza, A. A., Kranz, C., Mizaikoff, B., & Cotta, M. A. (2011). The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution. Journal of Colloid and Interface Science, 359, 289–295.

    Article  CAS  PubMed  Google Scholar 

  6. Jr Dunne, W. M. (2002). Bacterial adhesion: Seen any good biofilms lately? Clinical Microbiology Reviews, 15, 155–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carniello, V., Peterson, B. W., van der Mei, H. C., & Busscher, H. J. (2018). Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth. Advances in Colloid and Interface Science, 261, 1–14.

    Article  CAS  PubMed  Google Scholar 

  8. Zheng, S., Bawazir, M., Dhall, A., Kim, H. E., He, L., Heo, J., & Hwang, G. (2021). Implication of surface properties, bacterial motility, and hydrodynamic conditions on bacterial surface sensing and their initial adhesion. Frontiers in Bioengineering and Biotechnology, 9, 82.

    Article  Google Scholar 

  9. Teixeira, P., & Oliveira, R. (1999). Influence of surface characteristics on the adhesion of Alcaligenes denitrificans to polymeric substrates. Journal of Adhesion Science and Technology, 13, 1287–1294.

    Article  CAS  Google Scholar 

  10. Wong, G. C., Antani, J. D., Lele, P. P., Chen, J., Nan, B., Kühn, M. J., ... & Dunkel, J. (2021). Roadmap on emerging concepts in the physical biology of bacterial biofilms: From surface sensing to community formation. Physical Biology, 18(5), 051501.

  11. Ghilini, F., Pissinis, D. E., Miñán, A., Schilardi, P. L., & Diaz, C. (2019). How functionalized surfaces can inhibit bacterial adhesion and viability. ACS Biomaterials Science & Engineering, 5(10), 4920–4936.

    Article  CAS  Google Scholar 

  12. Berne, C., Ducret, A., Hardy, G. G., & Brun, Y. V. (2015). Adhesins involved in attachment to abiotic surfaces by gram-negative bacteria. Microbiology Spectrum3(4). https://doi.org/10.1128/microbiolspec. MB-0018–2015.

  13. Petrova, O. E., & Sauer, K. (2012). Sticky situations: Key components that control bacterial surface attachment. Journal of Bacteriology, 194(10), 2413–2425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Abraham, W. R. (2016). Going beyond the control of quorum-sensing to combat biofilm infections. Antibiotics, 5, 3. https://doi.org/10.3390/antibiotics5010003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, Y.-H., & Tian, X. (2012). Quorum Sensing and Bacterial Social Interactions in Biofilms. Sensors, 12(3), 2519–2538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Papenfort, K., & Bassler, B. L. (2016). Quorum sensing signal–response systems in Gram-negative bacteria. Nature Reviews Microbiology, 14(9), 576–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fahs, A., Quiles, F., Jamal, D., Humbert, F., & Francius, G. (2014). In situ analysis of bacterial extracellular polymeric substances from a Pseudomonas fluorescens biofilm by combined vibrational and single molecule force spectroscopies. The Journal of Physical Chemistry B, 118, 6702–6713.

    Article  CAS  PubMed  Google Scholar 

  18. Flemming, H. C. (2016). EPS-then and now. Microorganisms, 4, 41.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Toyofuku, M., Inaba, T., Kiyokawa, T., Obana, N., Yawata, Y., & Nomura, N. (2016). Environmental factors that shape biofilm formation. Bioscience, Biotechnology, and Biochemistry, 80(1), 7–12.

    Article  CAS  PubMed  Google Scholar 

  20. Frederick, M. R., Kuttler, C., Hense, B. A., & Eberl, H. J. (2011). A mathematical model of quorum sensing regulated EPS production in biofilm communities. Theoretical Biology & Medical Modelling, 8, 8.

    Article  Google Scholar 

  21. Garnett, J. A., & Matthews, S. (2012). Interactions in bacterial biofilm development: A structural perspective. Current Protein and Peptide Science, 13, 739–755.

    Article  CAS  PubMed  Google Scholar 

  22. Díaz-Salazar, C., Calero, P., Espinosa-Portero, R., Jiménez-Fernández, A., Wirebrand, L., Velasco-Domínguez, M. G., ... & Govantes, F. (2017). The stringent response promotes biofilm dispersal in Pseudomonas putida. Scientific Reports, 7(1), 1–13.

  23. Kaplan, J. Á. (2010). Biofilm dispersal: Mechanisms, clinical implications, and potential therapeutic uses. Journal of Dental Research, 89(3), 205–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kostakioti, M., Hadjifrangiskou, M., & Hultgren, S. J. (2013). Bacterial biofilms: Development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harbor Perspectives in Medicine, 3(4), a010306.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lee, K., & Yoon, S. S. (2017). Pseudomonas aeruginosa biofilm, a programmed bacterial life for fitness. Journal of Microbiology and Biotechnology, 27(6), 1053–1064.

    Article  CAS  PubMed  Google Scholar 

  26. Fleming, D., & Rumbaugh, K. P. (2017). Approaches to dispersing medical biofilms. Microorganisms, 5(2), 15.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Flemming, H. C., & Wuertz, S. (2019). Bacteria and archaea on Earth and their abundance in biofilms. Nature Reviews. Microbiology, 17(4), 247–260.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, N., Wang, D., Liu, Y., Li, S., Shen, Q., & Zhang, R. (2014). Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant and Soil, 374(1/2), 689–700.

    Article  CAS  Google Scholar 

  29. Pintelon, T. R., Picioreanu, C., van Loosdrecht, M. C., & Johns, M. L. (2012). The effect of biofilm permeability on bio-clogging of porous media. Biotechnology and Bioengineering, 109, 1031–1042.

    Article  CAS  PubMed  Google Scholar 

  30. Lin, D., Ma, W., Jin, Z., Wang, Y., Huang, Q., & Cai, P. (2016). Interactions of EPS with soil minerals: A combination study by ITC and CLSM. Colloids and Surfaces. B, Biointerfaces, 138, 10–16.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, Y., Tang, Q., Shi, P., & Katsumi, T. (2021). Influence of bio-clogging on permeability characteristics of soil. Geotextiles and Geomembranes, 49(3), 707–721.

    Article  Google Scholar 

  32. Lou, Y., Chang, W., Cui, T., Wang, J., Qian, H., Ma, L., ... & Zhang, D. (2021). Microbiologically influenced corrosion inhibition mechanisms in corrosion protection: A review.Bioelectrochemistry, 141, 107883.

  33. Petrova, O. E., Schurr, J. R., Schurr, M. J., & Sauer, K. (2012). Microcolony formation by the opportunistic pathogen Pseudomonas aeruginosa requires pyruvate and pyruvate fermentation. Molecular Microbiology, 86, 819–835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hollibaugh, J. T., Wong, P. S., & Murrell, M. C. (2000). Similarity of particle-associated and free-living bacterial communities in northern San Francisco Bay, California. Aquatic Microbial Ecology, 21(2), 103–114.

    Article  Google Scholar 

  35. Ghiglione, J. F., Mevel, G., Pujo-Pay, M., Mousseau, L., Lebaron, P., & Goutx, M. (2007). Diel and seasonal variations in abundance, activity, and community structure of particle-attached and free-living bacteria in NW Mediterranean Sea. Microbial Ecology, 54(2), 217–231.

    Article  CAS  PubMed  Google Scholar 

  36. Burmølle, M., Ren, D., Bjarnsholt, T., & Sørensen, S. J. (2014). Interactions in multispecies biofilms: Do they actually matter? Trends in Microbiology, 22(2), 84–91.

    Article  PubMed  Google Scholar 

  37. Mai-Prochnow, A., Zhou, R., Zhang, T., Ostrikov, K. K., Mugunthan, S., Rice, S. A., & Cullen, P. J. (2021). Interactions of plasma-activated water with biofilms: Inactivation, dispersal effects and mechanisms of action. npj Biofilms and Microbiomes, 7(1), 1–12.

    Article  Google Scholar 

  38. Sheik, C. S., Jain, S., & Dick, G. J. (2014). Metabolic flexibility of enigmatic SAR 324 revealed through metagenomics and metatranscriptomics. Environmental Microbiology, 16(1), 304–317.

    Article  CAS  PubMed  Google Scholar 

  39. Simon, H. M., Smith, M. W., & Herfort, L. (2014). Metagenomic insights into particles and their associated microbiota in a coastal margin ecosystem. Frontiers in Microbiology, 5, 466.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Orcutt, B. N., Sylvan, J. B., Knab, N. J., & Edwards, K. J. (2011). Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiology and Molecular Biology Reviews, 75, 361–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dang, H., Zhou, H., Yang, J., Ge, H., Jiao, N., Luan, X., ... & Klotz, M. G. (2013). Thaumarchaeotal signature gene distribution in sediments of the northern South China Sea: An indicator of the metabolic intersection of the marine carbon, nitrogen, and phosphorus cycles?. Applied and Environmental Microbiology, 79(7), 2137–2147.

  42. Salta, M., Wharton, J. A., Blache, Y., Stokes, K. R., & Briand, J. F. (2013). Marine biofilms on artificial surfaces: Structure and dynamics. Environmental Microbiology, 15(11), 2879–2893.

    PubMed  Google Scholar 

  43. Dybowska-Józefiak, M., & Wesołowska, M. (2021). Internal abiotic components that influence the development of biocorrosion on ETICS plasters. Materials (Basel, Switzerland), 15(1), 127.

    Article  PubMed  Google Scholar 

  44. Cottingham, K. L., Chiavelli, D. A., & Taylor, R. K. (2003). Environmental microbe and human pathogen: The ecology and microbiology of Vibrio cholerae. Frontiers in Ecology and the Environment, 1(2), 80–86.

    Article  Google Scholar 

  45. Varin, K. J., Lin, N. H., & Cohen, Y. (2013). Biofouling and cleaning effectiveness of surface nanostructured reverse osmosis membranes. Journal of Membrane Science, 446, 472–481.

    Article  CAS  Google Scholar 

  46. Shi, X., Xie, N., & Gong, J. (2011). Recent progress in the research on microbially influenced corrosion: A bird’s eye view through the engineering lens. Recent Patents on Corrosion Science, 1(2), 118–131.

    Article  Google Scholar 

  47. Cross, T. (2006). Accelerated low water corrosion—A universal phenomenon. Corros Manage, 69, 18–19.

    Google Scholar 

  48. Benedetti, I., de Lorenzo, V., & Nikel, P. I. (2016). Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes. Metabolic Engineering, 33, 109–118.

    Article  CAS  PubMed  Google Scholar 

  49. Jahid, I. K., & Ha, S. D. (2012). A review of microbial biofilms of produce: Future challenge to food safety. Food Science and Biotechnology, 21(2), 299–316.

    Article  CAS  Google Scholar 

  50. Srey, S., Jahid, I. K., & Ha, S. D. (2013). Biofilm formation in food industries: A food safety concern. Food Control, 31(2), 572–585.

    Article  Google Scholar 

  51. Takahashi, H., Miya, S., Igarashi, K., Suda, T., Kuramoto, S., & Kimura, B. (2009). Biofilm formation ability of Listeria monocytogenes isolates from raw ready-to-eat seafood. Journal of Food Protection, 72(7), 1476–1480.

    Article  PubMed  Google Scholar 

  52. Nitschke, M., Araújo, L. V., Costa, S. G., Pires, R. C., Zeraik, A. E., Fernandes, A. C., Freire, D. M., & Contiero, J. (2009). Surfactin reduces the adhesion of food-borne pathogenic bacteria to solid surfaces. Letters in Applied Microbiology, 49(2), 241–247.

    Article  CAS  PubMed  Google Scholar 

  53. Galgano, F., Condelli, N., Caruso, M. C., Colangelo, M. A., & Favati, F. (2015). Probiotics and prebiotics in fruits and vegetables: Technological and sensory aspects. Beneficial Microbes in Fermented and Functional Foods; Rai, VR, Bai, JA, Eds, 189–206.

  54. Kirtonia, K., Salauddin, M., Bharadwaj, K. K., Pati, S., Dey, A., Shariati, M. A., Tilak, V. K., Kuznetsova, E., & Sarkar, T. (2021). Bacteriocin: A new strategic antibiofilm agent in food industries. Biocatalysts and Agricultural Biotechnology, 36, 102141.

    Article  CAS  Google Scholar 

  55. Gómez, N. C., Ramiro, J. M., Quecan, B. X., & de Melo Franco, B. D. (2016). Use of potential probiotic lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157: H7 biofilms formation. Frontiers in Microbiology, 7, 863.

  56. Yang, S. C., Lin, C. H., Sung, C. T., & Fang, J. Y. (2014). Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Frontiers in Microbiology, 5, 241.

    PubMed  PubMed Central  Google Scholar 

  57. Rakin, A., Boolgakowa, E., & Heesemann, J. (1996). Structural and functional organization of the Yersinia pestis bacteriocin pesticin gene cluster. Microbiology (Reading, England), 142(Pt 12), 3415–3424.

    Article  CAS  PubMed  Google Scholar 

  58. Riley, M. A. (1993). Molecular mechanisms of colicin evolution. Molecular Biology and Evolution, 10(6), 1380–1395.

    CAS  PubMed  Google Scholar 

  59. Grim, C. J., Kozlova, E. V., Sha, J., Fitts, E. C., van Lier, C. J., Kirtley, M. L., Joseph, S. J., Read, T. D., Burd, E. M., Tall, B. D., Joseph, S. W., Horneman, A. J., Chopra, A. K., & Shak, J. R. (2013). Characterization of Aeromonas hydrophila wound pathotypes by comparative genomic and functional analyses of virulence genes. mBio, 4, 2e00064-13.

    Article  Google Scholar 

  60. Odeyemi, O. A., & Ahmad, A. (2017). Antibiotic resistance profiling and phenotyping of Aeromonas species isolated from aquatic sources. Saudi Journal of Biological Sciences, 24(1), 65–70.

    Article  CAS  PubMed  Google Scholar 

  61. Sumner, J., & Ross, T. (2002). A semi-quantitative seafood safety risk assessment. International Journal of Food Microbiology, 77, 55–59.

    Article  PubMed  Google Scholar 

  62. Nelson, E. J., Harris, J. B., Morris, J. G., Jr., Calderwood, S. B., & Camilli, A. (2009). Cholera transmission: The host, pathogen and bacteriophage dynamic. Nature Reviews. Microbiology, 7(10), 693–702.

    Article  CAS  PubMed  Google Scholar 

  63. Katarzyna Czaczyk, Kamila Myszka Department of Biotechnology and Food Microbiology, University of Life Sciences, Poznań, Poland.

  64. Fuster-Valls, N., Hernández-Herrero, M., Marín-de-Mateo, M., & Rodríguez-Jerez, J. J. (2008). Effect of different environmental conditions on the bacteria survival on stainless steel surfaces. Food Control, 19(3), 308–314.

    Article  CAS  Google Scholar 

  65. Branda, S. S., Vik, Å., Friedman, L., & Kolter, R. (2005). Biofilms: The matrix revisited. Trends in Microbiology, 13(1), 20–26.

    Article  CAS  PubMed  Google Scholar 

  66. Shi, X., & Zhu, X. (2009). Biofilm formation and food safety in food industries. Trends in Food Science & Technology, 20(9), 407–413.

    Article  CAS  Google Scholar 

  67. Burmølle, M., Kjøller, A., & Sørensen, S. J. (2011). Biofilms in soil. Encycl Agrophys, 8, 70–74.

    Article  Google Scholar 

  68. Roy, B., Maitra, D., & Mitra, A. K. (2021). Methods of sample preparation and assay of bacterial biofilms with special reference to their significance in agriculture and extreme environments. In Analytical Methodologies for Biofilm Research (pp. 39–65). Springer

  69. Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556.

    Article  CAS  PubMed  Google Scholar 

  70. Rudrappa, T., Biedrzycki, M. L., & Bais, H. P. (2008). Causes and consequences of plant-associated biofilms. FEMS Microbiology Ecology, 64(2), 153–166.

    Article  CAS  PubMed  Google Scholar 

  71. Kyrkou, I., Pusa, T., Ellegaard-Jensen, L., Sagot, M. F., & Hansen, L. H. (2018). Pierce’s disease of grapevines: A review of control strategies and an outline of an epidemiological model. Frontiers in Microbiology, 9, 2141.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Danhorn, T., & Fuqua, C. (2007). Biofilm formation by plant-associated bacteria. Annual Review of Microbiology, 61, 401–422.

    Article  CAS  PubMed  Google Scholar 

  73. Mori, Y., Inoue, K., Ikeda, K., Nakayashiki, H., Higashimoto, C., Ohnishi, K., Kiba, A., & Hikichi, Y. (2016). The vascular plant-pathogenic bacterium Ralstonia solanacearum produces biofilms required for its virulence on the surfaces of tomato cells adjacent to intercellular spaces. Molecular Plant Pathology, 17(6), 890–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Clutterbuck, A. L., Woods, E. J., Knottenbelt, D. C., Clegg, P. D., Cochrane, C. A., & Percival, S. L. (2007). Biofilms and their relevance to veterinary medicine. Veterinary Microbiology, 121(1–2), 1–17.

    Article  CAS  PubMed  Google Scholar 

  75. Hancock, V., Dahl, M., & Klemm, P. (2010). Probiotic Escherichia coli strain Nissle 1917 outcompetes intestinal pathogens during biofilm formation. Journal of Medical Microbiology, 59(Pt 4), 392–399.

    Article  PubMed  Google Scholar 

  76. Choi, J., Shin, D., & Ryu, S. (2007). Implication of quorum sensing in Salmonella enterica serovar typhimurium virulence: The luxS gene is necessary for expression of genes in pathogenicity island 1. Infection and Immunity, 75(10), 4885–4890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hardie, K. R., & Heurlier, K. (2008). Establishing bacterial communities by ‘word of mouth’: LuxS and autoinducer 2 in biofilm development. Nature Reviews. Microbiology, 6(8), 635–643.

    Article  CAS  PubMed  Google Scholar 

  78. Rubin, J., Walker, R. D., Blickenstaff, K., Bodeis-Jones, S., & Zhao, S. (2008). Antimicrobial resistance and genetic characterization of fluoroquinolone resistance of Pseudomonas aeruginosa isolated from canine infections. Veterinary Microbiology, 131(1–2), 164–172.

    Article  CAS  PubMed  Google Scholar 

  79. Gundogdu, O., Mills, D. C., Elmi, A., Martin, M. J., Wren, B. W., & Dorrell, N. (2011). The Campylobacter jejuni transcriptional regulator Cj1556 plays a role in the oxidative and aerobic stress response and is important for bacterial survival in vivo. Journal of Bacteriology, 193(16), 4238–4249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Boyen, F., Eeckhaut, V., Van Immerseel, F., Pasmans, F., Ducatelle, R., & Haesebrouck, F. (2009). Quorum sensing in veterinary pathogens: Mechanisms, clinical importance and future perspectives. Veterinary Microbiology, 135(3–4), 187–195.

    Article  CAS  PubMed  Google Scholar 

  81. Römling, U., & Balsalobre, C. (2012). Biofilm infections, their resilience to therapy and innovative treatment strategies. Journal of Internal Medicine, 272(6), 541–561.

    Article  PubMed  Google Scholar 

  82. Chen, L., & Wen, Y. M. (2011). The role of bacterial biofilm in persistent infections and control strategies. International Journal of Oral Science, 3(2), 66–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Awan, A. B., Yan, A., Sarwar, Y., Schierack, P., & Ali, A. (2021). Detection of synergistic antimicrobial resistance mechanisms in clinical isolates of Pseudomonas aeruginosa from post-operative wound infections. Applied Microbiology and Biotechnology, 105(24), 9321–9332.

    Article  CAS  PubMed  Google Scholar 

  84. Ayala, F. R., Bauman, C., Cogliati, S., Leñini, C., Bartolini, M., & Grau, R. (2017). Microbial flora, probiotics, Bacillus subtilis and the search for a long and healthy human longevity. Microbial Cell (Graz, Austria), 4(4), 133–136.

    Article  CAS  PubMed  Google Scholar 

  85. Hammami, R., Fernandez, B., Lacroix, C., & Fliss, I. (2013). Anti-infective properties of bacteriocins: An update. Cellular and Molecular Life Sciences, 70(16), 2947–2967.

    Article  CAS  PubMed  Google Scholar 

  86. Pandey, K., Naik, S., & Vakil, B. (2015). Probiotics, prebiotics and synbiotics-A review. Journal of Food Science and Technology, 52(12), 7577–7587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Alhede, M., Er, Ö., Eickhardt, S., Kragh, K., Alhede, M., Christensen, L. D., ... & Bjarnsholt, T. (2014). Bacterial biofilm formation and treatment in soft tissue fillers. Pathogens and Disease, 70(3), 339–346.

  88. Yamamoto, S., Tsuda, H., Miyai, K., Takano, M., Tamai, S., & Matsubara, O. (2011). Gene amplification and protein overexpression of MET are common events in ovarian clear-cell adenocarcinoma: Their roles in tumor progression and prognostication of the patient. Modern Pathology, 24(8), 1146–1155.

    Article  CAS  PubMed  Google Scholar 

  89. Allhorn, M., Arve, S., Brüggemann, H., & Lood, R. (2016). A novel enzyme with antioxidant capacity produced by the ubiquitous skin colonizer Propionibacterium acnes. Scientific Reports, 6(1), 1–12.

    Article  Google Scholar 

  90. Ghosh, S., Sarkar, T., & Chakraborty, R. (2021). Formation and development of biofilm – An alarming concern in food safety preservatives. Biocatalysts and Agricultural Biotechnology., 38, 102210.

    Article  CAS  Google Scholar 

  91. Hall-Stoodley, L., Stoodley, P., Kathju, S., Høiby, N., Moser, C., Costerton, J. W., Moter, A., & Bjarnsholt, T. (2012). Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunology and Medical Microbiology, 65(2), 127–145.

    Article  CAS  PubMed  Google Scholar 

  92. Fastenberg, J. H., Hsueh, W. D., Mustafa, A., Akbar, N. A., & Abuzeid, W. M. (2016). Biofilms in chronic rhinosinusitis: Pathophysiology and therapeutic strategies. World Journal of Otorhinolaryngology-Head and Neck Surgery, 2(4), 219–229.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Fischer, A. J., Singh, S. B., LaMarche, M. M., Maakestad, L. J., Kienenberger, Z. E., Peña, T. A., ... & Limoli, D. H. (2021). Sustained coinfections with Staphylococcus aureus and Pseudomonas aeruginosa in cystic fibrosis. American Journal of Respiratory and Critical Care Medicine, 203(3), 328–338.

  94. Fastenberg, J. H., Hsueh, W. D., Mustafa, A., Akbar, N. A., & Abuzeid, W. M. (2016). Biofilms in chronic rhinosinusitis: Pathophysiology and therapeutic strategies. World Journal of Otorhinolaryngology - Head and Neck Surgery, 2(4), 219–229.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Black, C. E., & Costerton, J. W. (2010). Current concepts regarding the effect of wound microbial ecology and biofilms on wound healing. The Surgical Clinics of North America, 90(6), 1147–1160.

    Article  PubMed  Google Scholar 

  96. Rediske, A. M., Roeder, B. L., Nelson, J. L., Robison, R. L., Schaalje, G. B., Robison, R. A., & Pitt, W. G. (2000). Pulsed ultrasound enhances the killing of Escherichia coli biofilms by aminoglycoside antibiotics in vivo. Antimicrobial Agents and Chemotherapy, 44(3), 771–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kohnen, W., & Jansen, B. (2000). Changing material surface chemistry for preventing bacterial adhesion. In Handbook of bacterial adhesion (pp. 581–589). Humana Press.

  98. Nezami, N., Xing, M., Groenwald, M., Silin, D., Kokabi, N., & Latich, I. (2019). Risk factors of infection and role of antibiotic prophylaxis in totally implantable venous access port placement: Propensity score matching. Cardiovascular and Interventional Radiology, 42(9), 1302–1310.

    Article  PubMed  Google Scholar 

  99. Nevius, B. A., Chen, Y. P., Ferry, J. L., & Decho, A. W. (2012). Surface-functionalization effects on uptake of fluorescent polystyrene nanoparticles by model biofilms. Ecotoxicology, 21, 2205–2213.

    Article  CAS  PubMed  Google Scholar 

  100. Kroll, A., Behra, R., Kaegi, R., & Sigg, L. (2014). Extracellular polymeric substances (EPS) of freshwater biofilms stabilize and modify CeO2 and Ag nanoparticles. PLoS ONE, 9, e110709.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ikuma, K., Decho, A. W., & Lau, B. L. (2015). When nanoparticles meet biofilms-interactions guiding the environmental fate and accumulation of nanoparticles. Frontiers in Microbiology, 6, 591.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Babauta, J. T., Nguyen, H. D., Harrington, T. D., Renslow, R., & Beyenal, H. (2012). pH, redox potential and local biofilm potential microenvironments within Geobacter sulfurreducens biofilms and their roles in electron transfer. Biotechnology and Bioengineering, 109(10), 2651–2662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kalathil, S., Lee, J., & Cho, M. H. (2011). Electrochemically active biofilm-mediated synthesis of silver nanoparticles in water. Green Chemistry, 13(6), 1482–1485.

    Article  CAS  Google Scholar 

  104. Khan, M. M., Kalathil, S., Han, T. H., Lee, J., & Cho, M. H. (2013). Positively charged gold nanoparticles synthesized by electrochemically active biofilm—A biogenic approach. Journal of Nanoscience and Nanotechnology, 13(9), 6079–6085.

    Article  CAS  PubMed  Google Scholar 

  105. Khan, M. M., Ansari, S. A., Lee, J. H., Ansari, M. O., Lee, J., & Cho, M. H. (2014). Electrochemically active biofilm assisted synthesis of Ag@ CeO2 nanocomposites for antimicrobial activity, photocatalysis and photoelectrodes. Journal of Colloid and Interface Science, 431, 255–263.

    Article  CAS  PubMed  Google Scholar 

  106. Bruins, M. R., Kapil, S., & Oehme, F. W. (2000). Microbial resistance to metals in the environment. Ecotoxicology and Environmental Safety, 45(3), 198–207.

    Article  CAS  PubMed  Google Scholar 

  107. Ji, G., & Silver, S. (1995). Bacterial resistance mechanisms for heavy metals of environmental concern. Journal of Industrial Microbiology, 14(2), 61–75.

    Article  CAS  PubMed  Google Scholar 

  108. Mergeay, M., Monchy, S., Vallaeys, T., Auquier, V., Benotmane, A., Bertin, P., ... & Wattiez, R. (2003). Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: Towards a catalogue of metal-responsive genes. FEMS Microbiology Reviews, 27(2–3), 385–410.

  109. Hong, C., Hao, H., & Haiyun, W. (2009). Process optimization for PHA production by activated sludge using response surface methodology. Biomass and Bioenergy., 33, 721–727.

    Article  CAS  Google Scholar 

  110. Ebrahimpour, A., Rahman, R. N. Z. R. A., Ch’ng, D. H. E., Basri, M., & Salleh, A. B. (2008). A modeling study by response surface methodology and artificial neural network on culture parameters optimization for thermostable lipase production from a newly isolated thermophilic Geobacillus sp. strain ARM. BMC Biotechnol, 8(1), 96.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Roy, R., Tiwari, M., Donelli, G., & Tiwari, V. (2018). Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence, 9(1), 522–554.

    Article  CAS  PubMed  Google Scholar 

  112. Cairns, L. S., Hobley, L., & Stanley-Wall, N. R. (2014). Biofilm formation by Bacillus subtilis: New insights into regulatory strategies and assembly mechanisms. Molecular Microbiology, 93(4), 587–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fong, J., & Yildiz, F. H. (2015). Biofilm matrix proteins. Microbiology Spectrum, 3(2). https://doi.org/10.1128/microbiolspec.MB-0004-2014

  114. Hathroubi, S., Servetas, S. L., Windham, I., Merrell, D. S., & Ottemann, K. M. (2018). Helicobacter pylori biofilm formation and its potential role in pathogenesis. Microbiology and Molecular Biology Reviews: MMBR, 82(2), e00001-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Beloin, C., Roux, A., & Ghigo, J. M. (2008). Escherichia coli biofilms. Current Topics in Microbiology and Immunology, 322, 249–289.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang, H., Wang, H., Xing, T., Wu, N., Xu, X., & Zhou, G. (2016). Removal of Salmonella biofilm formed under meat processing environment by surfactant in combination with bio-enzyme. LWT-Food Science and Technology, 66, 298–304.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge University of Engineering and Management, Kolkata, and all the members of the Department of Biotechnology for their kind cooperation in completion of this work.

Author information

Authors and Affiliations

Authors

Contributions

SM: conceptualization, supervision; SB: review of existing literature; SP: writing original draft; SN: writing original draft; SP: supervision, writing—reviewing and editing.

Corresponding author

Correspondence to Sonali Paul.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Availability of Data and Material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

Ethics Approval

Not applicable. The manuscript does not contain data collected from animals and humans.

Consent for Publication

Not applicable. The manuscript does not contain any individual person’s data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Bhattacharjee, S., Paul, S. et al. Biofilm—a Syntrophic Consortia of Microbial Cells: Boon or Bane?. Appl Biochem Biotechnol 195, 5583–5604 (2023). https://doi.org/10.1007/s12010-022-04075-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04075-4

Keywords

Navigation