Skip to main content
Log in

Biosurfactants: Secondary Metabolites Involved in the Process of Bioremediation and Biofilm Removal

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The search for environmentally friendly methods to remove persistent substances such as organic pollutants and sessile communities such as biofilms that severely affect the environment and human health resulted in biosurfactant discovery. Owing to their low level of toxicity and high biodegradability, biosurfactants are increasingly preferred to be used for removal of pollutants from nature. These amphipathic molecules can be synthesized inexpensively, employing cheap substrates such as agricultural and industrial wastes. Recent progress has been made in identifying various biosurfactants that can be used to remove organic pollutants and harmful microbial aggregates, as well as novel microbial strains that produce these surface-active molecules to survive in a hydrocarbon-rich environment. This review focuses on the identification and understanding the role of biosurfactants and the microorganisms involved in the removal of biofilms and remediation of xenobiotics and various types of hydrocarbons such as crude oil, aromatic hydrocarbons, n-alkanes, aliphatic hydrocarbons, asphaltenes, naphthenes, and other petroleum products. This property of biosurfactant is very important as biofilms are of great concern due to their impact on the environment, public health, and industries worldwide. This work also includes several advanced molecular methods that can be used to enhance the production of biosurfactants by the microorganisms studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Lahiri, D., et al. (2019). Elucidating the effect of anti-biofilm activity of bioactive compounds extracted from plants. Journal of Biosciences, 44(2), 1–19.

    Article  Google Scholar 

  2. Sáenz-Marta, C. I., et al. (2015). Biosurfactants as useful tools in bioremediation. Advances in Bioremediation of Wastewater and Polluted soil 9

  3. Srivastava, M., et al. (2019). Source and control of hydrocarbon pollution, in Hydrocarbon Pollution and its Effect on the Environment, IntechOpen.

  4. Karlapudi, A. P., et al. (2018). Role of biosurfactants in bioremediation of oil pollution-A review. Petroleum, 4(3), 241–249.

    Article  Google Scholar 

  5. Cameotra, S. S., et al. (2010). Synthesis of biosurfactants and their advantages to microorganisms and mankind. Biosurfactants, 261–280.

  6. Smith, G. D. (1979). Commercial surfactants: An overview. Solution chemistry of surfactants, p. 195–218.

  7. Shekhar, S., Sundaramanickam, A., & Balasubramanian, T. (2015). Biosurfactant producing microbes and their potential applications: A review. Critical Reviews in Environmental Science and Technology, 45(14), 1522–1554.

    Article  CAS  Google Scholar 

  8. Pamp, S. n. J. & Tolker-Nielsen, T. (2007). Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. Journal of Bacteriology, 189(6), 2531–2539.

  9. Sharma, D., Misba, L., & Khan, A. U. (2019). Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrobial Resistance & Infection Control, 8(1), 1–10.

    Article  Google Scholar 

  10. Hausner, M., & Wuertz, S. (1999). High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Applied and Environmental Microbiology, 65(8), 3710–3713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Palmer, J., Flint, S., & Brooks, J. (2007). Bacterial cell attachment, the beginning of a biofilm. Journal of Industrial Microbiology and Biotechnology, 34(9), 577–588.

    Article  CAS  PubMed  Google Scholar 

  12. Nag, M., et al. (2021). Quorum sensing. Biofilm-mediated diseases: Causes and controls (pp. 21–45). Springer.

    Chapter  Google Scholar 

  13. Donlan, R. M. (2002). Biofilms: Microbial life on surfaces. Emerging Infectious Diseases, 8(9), 881.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nag, M., et al. (2021). Microbial fabrication of nanomaterial and its role in disintegration of exopolymeric matrices of biofilm. Frontiers in Chemistry, 9

  15. Muhammad, M. H., et al. (2020). Beyond risk: Bacterial biofilms and their regulating approaches. Frontiers in Microbiology, 11, 928.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bagge, D., et al. (2001). Shewanella putrefaciens adhesion and biofilm formation on food processing surfaces. Applied and Environmental Microbiology, 67(5), 2319–2325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Patterson, A. D., Gonzalez, F. J., & Idle, J. R. (2010). Xenobiotic metabolism: A view through the metabolometer. Chemical Research in Toxicology, 23(5), 851–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Abosede, E. E. (2013). Effect of crude oil pollution on some soil physical properties. Journal of Agriculture and Veterinary Science, 6(3), 14–17.

    Google Scholar 

  19. Council, N. R. (2003). Oil in the sea III: inputs, fates, and effects.

  20. Mohammadi, L., et al. (2020). Petroleum hydrocarbon removal from wastewaters: A review. Processes, 8, 447.

    Article  CAS  Google Scholar 

  21. Patowary, K., et al. (2017). Characterization of biosurfactant produced during degradation of hydrocarbons using crude oil as sole source of carbon. Frontiers in Microbiology, 8, 279.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hwang, H.-M., Hu, X., & Zhao, X. (2007). Enhanced bioremediation of polycyclic aromatic hydrocarbons by environmentally friendly techniques. Journal of Environmental Science and Health Part C, 25(4), 313–352.

    Article  CAS  Google Scholar 

  23. McKee, R. H., & White, R. (2014) The mammalian toxicological hazards of petroleum-derived substances: An overview of the petroleum industry response to the high production volume challenge program. International Journal of Toxicology, 33(1_suppl), 4S-16S.

  24. Abha, S., & Singh, C. S. (2012). Hydrocarbon pollution: Effects on living organisms, remediation of contaminated environments, and effects of heavy metals co-contamination on bioremediation. Introduction to enhanced oil recovery (EOR) processes and bioremediation of oil-contaminated sites, 185–206.

  25. Aguilera, F., et al. (2010). Review on the effects of exposure to spilled oils on human health. Journal of Applied Toxicology: An International Journal, 30(4), 291–301.

    CAS  Google Scholar 

  26. Patel, A. B., et al. (2020). Polycyclic aromatic hydrocarbons: Sources, toxicity and remediation approaches. Frontiers in Microbiology, 11, 2675.

    Article  Google Scholar 

  27. Lahiri, D., et al. (2021). Biofilm mediated degradation of petroleum products. Geomicrobiology Journal, 1–10

  28. Manzetti, S. (2013). Polycyclic aromatic hydrocarbons in the environment: Environmental fate and transformation. Polycyclic Aromatic Compounds, 33(4), 311–330.

    Article  CAS  Google Scholar 

  29. Abdel-Shafy, H. I., & Mansour, M. S. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107–123.

    Article  Google Scholar 

  30. Hoffman, E. J., et al. (1984). Urban runoff as a source of polycyclic aromatic hydrocarbons to coastal waters. Environmental Science & Technology, 18(8), 580–587.

    Article  CAS  Google Scholar 

  31. Goldman, R., et al. (2001). Smoking increases carcinogenic polycyclic aromatic hydrocarbons in human lung tissue. Cancer Research, 61(17), 6367–6371.

    CAS  PubMed  Google Scholar 

  32. Mastrangelo, G., Fadda, E., & Marzia, V. (1996). Polycyclic aromatic hydrocarbons and cancer in man. Environmental Health Perspectives, 104(11), 1166–1170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Santos, F., Parera, J., & Galceran, M. (2006). Analysis of polychlorinated n-alkanes in environmental samples. Analytical and Bioanalytical Chemistry, 386(4), 837–857.

    Article  CAS  PubMed  Google Scholar 

  34. Feo, M., Eljarrat, E., & Barcelo, D. (2009). Occurrence, fate and analysis of polychlorinated n-alkanes in the environment. TrAC Trends in Analytical Chemistry, 28(6), 778–791.

    Article  CAS  Google Scholar 

  35. Wang, F.-I., et al. (2002). Chronic toxicity of a mixture of chlorinated alkanes and alkenes in ICR mice. Journal of Toxicology and Environmental Health Part A, 65(3–4), 279–291.

    Article  CAS  PubMed  Google Scholar 

  36. Pineda-Flores, G., & Mesta-Howard, A. M. (2001). Petroleum asphaltenes: Generated problematic and possible biodegradation mechanisms. Revista Latinoamericana de Microbiología, 43(3), 143–150.

    CAS  PubMed  Google Scholar 

  37. Pineda-Flores, G., et al. (2004). A microbial consortium isolated from a crude oil sample that uses asphaltenes as a carbon and energy source. Biodegradation, 15(3), 145–151.

    Article  CAS  PubMed  Google Scholar 

  38. Alshareef, A. H. (2019). Asphaltenes: Definition, properties, and reactions of model compounds. Energy & Fuels, 34(1), 16–30.

    Article  Google Scholar 

  39. Fakher, S., et al. (2020). Critical review of asphaltene properties and factors impacting its stability in crude oil. Journal of Petroleum Exploration and Production Technology, 10(3), 1183–1200.

    Article  CAS  Google Scholar 

  40. Usman, M. M., et al. (2016). Application of biosurfactants in environmental biotechnology; remediation of oil and heavy metal. AIMS Bioengineering, 3(3), 289–304.

    Article  CAS  Google Scholar 

  41. Silva, M., & Sarubbo, L. (2021). Synthetic and biological surfactants used to mitigate biofouling on industrial facilities surfaces. Biointerface Research in Applied Chemistry, 12(2), 2560–2585.

    Article  Google Scholar 

  42. Uzoigwe, C., et al. (2015). Bioemulsifiers are not biosurfactants and require different screening approaches. Frontiers in Microbiology, 6, 245.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jezierska, S., Claus, S., & Van Bogaert, I. (2018). Yeast glycolipid biosurfactants. FEBS Letters, 592(8), 1312–1329.

    Article  CAS  PubMed  Google Scholar 

  44. Phulpoto, I. A., et al. (2020). Production and characterization of surfactin-like biosurfactant produced by novel strain Bacillus nealsonii S2MT and it’s potential for oil contaminated soil remediation. Microbial Cell Factories, 19(1), 1–12.

    Article  Google Scholar 

  45. Jonathan, C. L., Manresa Presas, M., and Marqués Villavecchia, A. M. (2016). Lichenysin production and application in the pharmaceutical field. Recent Advances in Pharmaceutical Sciences VI, 2016, Research Signpost. ISBN: 978–81–308–0566–5. Chapter 9, p. 147–163. http://hdl.handle.net/2445/104173

  46. Laycock, M. V., et al. (1991). Viscosin, a potent peptidolipid biosurfactant and phytopathogenic mediator produced by a pectolytic strain of Pseudomonas fluorescens. Journal of Agricultural and Food Chemistry, 39(3), 483–489.

    Article  CAS  Google Scholar 

  47. Neu, T. R., Härtner, T., & Poralla, K. (1990). Surface active properties of viscosin: A peptidolipid antibiotic. Applied Microbiology and Biotechnology, 32(5), 518–520.

    Article  CAS  Google Scholar 

  48. Satputea, S. K., et al. (2016). Multiple roles of biosurfactants in biofilms. Current Pharmaceutical Design, 22(11), 1429–1448.

    Article  CAS  PubMed  Google Scholar 

  49. Cunningham, A., Lennox, J., & Ross, R. (2011). Biofilms: The Hypertextbook. 2011. Biofilm growth and development. Retrieved from http://www.hypertextbookshop.com/biofilmbook/working_versionOld/[Google Scholar].

  50. Seydlová, G., et al. (2013). Surfactin production enhances the level of cardiolipin in the cytoplasmic membrane of Bacillus subtilis. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1828(11), 2370–2378.

  51. Peypoux, F., et al. (1991). Isolation and characterization of a new variant of surfactin, the [Val7] surfactin. European Journal of Biochemistry, 202(1), 101–106.

    Article  CAS  PubMed  Google Scholar 

  52. Maget-Dana, R., & Ptak, M. (1995). Interactions of surfactin with membrane models. Biophysical Journal, 68(5), 1937–1943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Déjugnat, C., Diat, O., & Zemb, T. (2011). Surfactin self-assembles into direct and reverse aggregates in equilibrium and performs selective metal cation extraction. Chem Phys Chem, 12(11), 2138–2144.

    Article  PubMed  Google Scholar 

  54. Ostroumova, O. S., et al. (2010). Surfactin activity depends on the membrane dipole potential. Langmuir, 26(19), 15092–15097.

    Article  CAS  PubMed  Google Scholar 

  55. Heerklotz, H., & Seelig, J. (2001). Detergent-like action of the antibiotic peptide surfactin on lipid membranes. Biophysical Journal, 81(3), 1547–1554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yan, X., et al. (2019). Antimicrobial, anti-adhesive and anti-biofilm potential of biosurfactants isolated from Pediococcus acidilactici and Lactobacillus plantarum against Staphylococcus aureus CMCC26003. Microbial Pathogenesis, 127, 12–20.

    Article  CAS  PubMed  Google Scholar 

  57. Mireles, J., II., Toguchi, A., & Harshey, R. M. (2001). Salmonella enterica serovar typhimurium swarming mutants with altered biofilm forming abilities: Surfactin inhibits biofilm formation. Journal of Bacteriology, 183(20), 5848–5854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rivardo, F., et al. (2009). Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Applied Microbiology and Biotechnology, 83(3), 541–553.

    Article  CAS  PubMed  Google Scholar 

  59. Alemán-Vega, M., et al. (2020). Exploring antifouling activity of biosurfactants producing marine bacteria isolated from Gulf of California. International Journal of Molecular Sciences, 21(17), 6068.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rodrigues, L., et al. (2006). Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants. Journal of Applied Microbiology, 100(3), 470–480.

    Article  CAS  PubMed  Google Scholar 

  61. Velraeds, M., et al. (1996). Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates. Applied and Environmental Microbiology, 62(6), 1958–1963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Medeot, D. B., et al. (2020). Fengycins from Bacillus amyloliquefaciens MEP218 exhibit antibacterial activity by producing alterations on the cell surface of the pathogens Xanthomonas axonopodis pv. vesicatoria and Pseudomonas aeruginosa PA01. Frontiers in Microbiology, 10, 3107.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Busi, S., & Rajkumari, J. (2017). Biosurfactant: A promising approach toward the remediation of xenobiotics, a way to rejuvenate the marine ecosystem. Marine pollution and microbial remediation (pp. 87–104). Springer.

    Chapter  Google Scholar 

  64. Darwesh, O. M., et al. (2021). Improving the bioremediation technology of contaminated wastewater using biosurfactants produced by novel bacillus isolates. Heliyon, e08616.

  65. Parthipan, P., et al. (2017). Biosurfactant and degradative enzymes mediated crude oil degradation by bacterium Bacillus subtilis A1. Frontiers in Microbiology, 8, 193.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Asadollahi, L., Salehizadeh, H., & Yan, N. (2016). Investigation of biosurfactant activity and asphaltene biodegradation by Bacillus cereus. Journal of Polymers and the Environment, 24(2), 119–128.

    Article  CAS  Google Scholar 

  67. Chebbi, A., et al. (2017). Polycyclic aromatic hydrocarbon degradation and biosurfactant production by a newly isolated Pseudomonas sp. strain from used motor oil-contaminated soil. International Biodeterioration & Biodegradation, 122, 128–140.

    Article  CAS  Google Scholar 

  68. Berry, C., et al. (2006). BTEX biodegradation by biosurfactant-producing bacteria. in Environmental Engineering: Proceedings of the Second National Congress of Environmental Engineering, Lublin, Poland, 4–8 September 2005. Taylor & Francis.

  69. Nehal, N., Singh P. (2021). Optimization of cultural condition of Bacillus sp. MZ540316: improve biodegradation efficiency of lipopeptide biosurfactant against polyethylene. Biomass Conversion and Biorefinery, 1–17.

  70. Taghavi, N., Zhuang, W.-Q., Baroutian, S. (2021) Effect of rhamnolipid biosurfactant on biodegradation of untreated and UV-pretreated non-degradable thermoplastics: Part 2. Journal of Environmental Chemical Engineering, 107033.

  71. Ahmed, T., et al. (2018). Biodegradation of plastics: Current scenario and future prospects for environmental safety. Environmental Science and Pollution Research, 25(8), 7287–7298.

    Article  CAS  PubMed  Google Scholar 

  72. Desai, J. D., & Banat, I. M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61(1), 47–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Cheng, T., et al. (2017). A novel rhamnolipid-producing Pseudomonas aeruginosa ZS1 isolate derived from petroleum sludge suitable for bioremediation. AMB Express, 7(1), 1–14.

    Article  Google Scholar 

  74. Jorfi, S., et al. (2013). Application of biosurfactants produced by Pseudomonas aeruginosa SP4 for bioremediation of soils contaminated by pyrene. Soil and Sediment Contamination: An International Journal, 22(8), 890–911.

    Article  Google Scholar 

  75. Tuleva, B. K., Ivanov, G. R., & Christova, N. E. (2002). Biosurfactant production by a new Pseudomonas putida strain. Zeitschrift für Naturforschung C, 57(3–4), 356–360.

    Article  CAS  Google Scholar 

  76. Elenga-Wilson, P. S., et al. (2021). Profiling of indigenous biosurfactant-producing bacillus isolates in the bioremediation of soil contaminated by petroleum products and olive oil. International Journal of Microbiology, 2021.

  77. Gudiña, E. J., et al. (2015). Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium. Frontiers in Microbiology, 6, 59.

    PubMed  PubMed Central  Google Scholar 

  78. Zhou, H., et al. (2015). Biosurfactant production and characterization of Bacillus sp. ZG0427 isolated from oil-contaminated soil. Annals of Microbiology, 65(4), 2255–2264.

    Article  CAS  Google Scholar 

  79. Cheng, F., et al. (2013). Characterization of a blend-biosurfactant of glycolipid and lipopeptide produced by Bacillus subtilis TU2 isolated from underground oil-extraction wastewater. Journal of Microbiology and Biotechnology, 23(3), 390–396.

    Article  CAS  PubMed  Google Scholar 

  80. Stancu, M. M. (2020). Biosurfactant production by a Bacillus megaterium strain. Open Life Sciences, 15(1), 629–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dadrasnia, A., & Ismail, S. (2015). Biosurfactant production by Bacillus salmalaya for lubricating oil solubilization and biodegradation. International Journal of Environmental Research and Public Health, 12(8), 9848–9863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kuyukina, M. S., Ivshina, I. B. (2019). Production of trehalolipid biosurfactants by Rhodococcus. Biology of Rhodococcus, 271–298.

  83. Cappelletti, M., et al. (2020). Biotechnology of Rhodococcus for the production of valuable compounds. Applied Microbiology and Biotechnology, 1–28.

  84. Pacheco, G. J., et al. (2010). Biosurfactant production by Rhodococcus erythropolis and its application to oil removal. Brazilian Journal of Microbiology, 41, 685–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ibrahim, S., et al. (2020). Biosurfactant production and growth kinetics studies of the waste canola oil-degrading bacterium Rhodococcus erythropolis AQ5-07 from Antarctica. Molecules, 25(17), 3878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zheng, C., et al. (2009). Study of the biosurfactant-producing profile in a newly isolated Rhodococcus ruber strain. Annals of microbiology, 59(4), 771–776.

    Article  CAS  Google Scholar 

  87. Mujumdar, S., Joshi, P., & Karve, N. (2019). Production, characterization, and applications of bioemulsifiers (BE) and biosurfactants (BS) produced by Acinetobacter spp.: a review. Journal of Basic Microbiology, 59(3), 277–287.

    Article  CAS  PubMed  Google Scholar 

  88. Bao, M., et al. (2014). Lipopeptide biosurfactant production bacteria Acinetobacter sp. D3–2 and its biodegradation of crude oil. Environmental Science: Processes & Impacts, 16(4), 897–903.

    CAS  Google Scholar 

  89. Parthipan, P., et al. (2017). Biosurfactant and enzyme mediated crude oil degradation by Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3. 3 Biotech, 7(5), 1–17.

  90. Banat, I. M., et al. (2014). Cost effective technologies and renewable substrates for biosurfactants’ production. Frontiers in Microbiology, 5, 697.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bouassida, M., et al. (2018). Improved biosurfactant production by Bacillus subtilis SPB1 mutant obtained by random mutagenesis and its application in enhanced oil recovery in a sand system. Journal of Microbiology and Biotechnology, 28(1), 95–104.

    Article  CAS  PubMed  Google Scholar 

  92. Ochsner, U. A., et al. (1994). Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Journal of Bacteriology, 176(7), 2044–2054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Burger, M. M., Glaser, L., & Burton, R. M. (1963). The enzymatic synthesis of a rhamnose-containing glycolipid by extracts of Pseudomonas aeruginosa. Journal of Biological Chemistry, 238(8), 2595–2602.

    Article  CAS  PubMed  Google Scholar 

  94. Rahim, R., et al. (2001). Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Molecular Microbiology, 40(3), 708–718.

    Article  CAS  PubMed  Google Scholar 

  95. Soberón-Chávez, G., et al. (2021). Rhamnolipids produced by Pseudomonas: From molecular genetics to the market. Microbial Biotechnology, 14(1), 136–146.

    Article  PubMed  Google Scholar 

  96. Ekpenyong, M., et al. (2021). Statistical and artificial neural network approaches to modeling and optimization of fermentation conditions for production of a surface/bioactive glyco-lipo-peptide. International Journal of Peptide Research and Therapeutics, 27(1), 475–495.

    Article  CAS  PubMed  Google Scholar 

  97. Ahmad, Z., et al. (2016). Estimation of biosurfactant yield produced by Klebseilla sp. FKOD36 bacteria using artificial neural network approach. Measurement, 81, 163–173.

    Article  Google Scholar 

  98. Shreve, G. S., & Makula, R. (2019). Characterization of a new rhamnolipid biosurfactant complex from Pseudomonas isolate dyna270. Biomolecules, 9(12), 885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sen, S., et al. (2020). Rhamnolipid exhibits anti-biofilm activity against the dermatophytic fungi Trichophyton rubrum and Trichophyton mentagrophytes. Biotechnology Reports, 27, e00516.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ashby, R. D., Solaiman, D. K., & Foglia, T. A. (2008). Property control of sophorolipids: Influence of fatty acid substrate and blending. Biotechnology Letters, 30(6), 1093–1100.

    Article  CAS  PubMed  Google Scholar 

  101. Haque, F., et al. (2017). Anti-biofilm activity of a sophorolipid-amphotericin B niosomal formulation against Candida albicans. Biofouling, 33(9), 768–779.

    Article  CAS  PubMed  Google Scholar 

  102. Díaz De Rienzo, M. A., et al. (2016). Antibacterial properties of biosurfactants against selected Gram-positive and-negative bacteria. FEMS Microbiology Letters, 363(2).

  103. Janek, T., et al. (2018). Trehalose lipid biosurfactant reduces adhesion of microbial pathogens to polystyrene and silicone surfaces: An experimental and computational approach. Frontiers in Microbiology, 9, 2441.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Saini, H. S., et al. (2008). Efficient purification of the biosurfactant viscosin from Pseudomonas libanensis strain M9–3 and its physicochemical and biological properties. Journal of Natural Products, 71(6), 1011–1015.

    Article  CAS  PubMed  Google Scholar 

  105. Bonnichsen, L., et al. (2015). Lipopeptide biosurfactant viscosin enhances dispersal of Pseudomonas fluorescens SBW25 biofilms. Microbiology, 161(Pt 12), 2289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Morikawa, M., et al. (1993). A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. Journal of Bacteriology, 175(20), 6459–6466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Liu, J., et al. (2019). Surfactin effectively inhibits Staphylococcus aureus adhesion and biofilm formation on surfaces. Applied Microbiology and Biotechnology, 103(11), 4565–4574.

    Article  CAS  PubMed  Google Scholar 

  108. Sanchez, L. M., et al. (2016). Biofilm formation and detachment in Gram-negative pathogens is modulated by select bile acids. PLoS ONE, 11(3), e0149603.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zdziennicka, A., et al. (2019). Surface, volumetric, and wetting properties of oleic, linoleic, and linolenic acids with regards to application of Canola Oil in Diesel Engines. Applied Sciences, 9(17), 3445.

    Article  CAS  Google Scholar 

  110. Kim, H. S., et al. (2021). Linoleic acid inhibits Pseudomonas aeruginosa biofilm formation by activating diffusible signal factor-mediated quorum sensing. Biotechnology and Bioengineering, 118(1), 82–93.

    Article  CAS  PubMed  Google Scholar 

  111. Amiriyan, A., et al. (2004). Bioemulsan production by Iranian oil reservoirs microorganisms.

  112. Diniz Rufino, R., et al. (2014). Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electronic Journal of Biotechnology, 17(1), 6–6.

    Google Scholar 

  113. Mishra, R., et al. (2020). Natural anti-biofilm agents: Strategies to control biofilm-forming pathogens. Frontiers in Microbiology, 11, 2640.

    Article  Google Scholar 

  114. Willenbacher, J., et al. (2015). Enhancement of surfactin yield by improving the medium composition and fermentation process. AMB Express, 5(1), 1–9.

    Article  Google Scholar 

  115. Müller, M. M., et al. (2010). Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems. Applied microbiology and Biotechnology, 87(1), 167–174.

    Article  PubMed  Google Scholar 

  116. Horowitz, S., Gilbert, J., & Griffin, W. M. (1990). Isolation and characterization of a surfactant produced by Bacillus licheniformis 86. Journal of Industrial Microbiology, 6(4), 243–248.

    Article  CAS  Google Scholar 

  117. Kumar, P. N., et al. (2017). Statistical optimization of antifungal iturin A production from Bacillus amyloliquefaciens RHNK22 using agro-industrial wastes. Saudi Journal of Biological Sciences, 24(7), 1722–1740.

    Article  Google Scholar 

  118. Joshi, S. J., et al. (2016). Production, characterization, and application of Bacillus licheniformis W16 biosurfactant in enhancing oil recovery. Frontiers in Microbiology, 7, 1853.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Qiu, Y., et al. (2014). Improvement of lichenysin production in Bacillus licheniformis by replacement of native promoter of lichenysin biosynthesis operon and medium optimization. Applied Microbiology and Biotechnology, 98(21), 8895–8903.

    Article  CAS  PubMed  Google Scholar 

  120. Chamanrokh, P., et al. (2008). Emulsan analysis produced by locally isolated bacteria and Acinetobacter calcoaceticus RAG-1. Journal of Environmental Health Science & Engineering, 5(2), 101–108.

    CAS  Google Scholar 

  121. Bages-Estopa, S., et al. (2018). Production and separation of a trehalolipid biosurfactant. Biochemical Engineering Journal, 139, 85–94.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Microbiology, Sikkim University, for providing the computational infrastructure and central library facilities for procuring references and plagiarism analysis (URKUND: Plagiarism Detection Software).

Author information

Authors and Affiliations

Authors

Contributions

AKV conceived of the presented idea. SB and DC discussed every topic and wrote the review. AKV provided critical feedback, supervised the study, and helped in shape the review.

Corresponding author

Correspondence to Anil Kumar Verma.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhadra, S., Chettri, D. & Kumar Verma, A. Biosurfactants: Secondary Metabolites Involved in the Process of Bioremediation and Biofilm Removal. Appl Biochem Biotechnol 195, 5541–5567 (2023). https://doi.org/10.1007/s12010-022-03951-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03951-3

Keywords

Navigation