Skip to main content
Log in

A Novel Digestive GH16 β-1,3(4)-Glucanase from the Fungus-Growing Termite Macrotermes barneyi

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

β-1,3-glucanases are the main digestive enzymes of plant and fungal cell wall. Transcriptomic analysis of the fungus-growing termite Macrotermes barneyi revealed a high expression of a predicted β-1,3(4)-glucanase (Mbbgl) transcript in termite gut. Here, we described the cDNA cloning, heterologous expression, and enzyme characterization of Mbbgl. Sequence analysis and RT-PCR results showed that Mbbgl is a termite-origin GH16 β-1,3(4)-glucanase. The recombinant enzyme showed the highest activity towards laminarin and was active optimally at 50 °C, pH 5.5. The enzyme displayed endo/exo β-1,3(4)-glucanase activities. Moreover, Mbbgl had weak transglycosylation activity. The results indicate that Mbbgl is an endogenous digestive β-1,3(4)-glucanase, which contributes to the decomposition of plant biomass and fungal hyphae. Additionally, the multiple activities, pH, and ion stabilities make Mbbgl a potential candidate for application in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Labourel, A., Jam, M., Jeudy, A., Hehemann, J. H., Czjzek, M., & Michel, G. (2014). The beta-glucanase ZgLamA from Zobellia galactanivorans evolved a bent active site adapted for efficient degradation of algal laminarin. The Journal of Biological Chemistry, 289(4), 2027–2042.

    CAS  Google Scholar 

  2. Stone, B. A. (2009). Chemistry of β-glucans. In Chemistry, Biochemistry and Biology of (1,3)-β-Glucans and related polysaccharides (Bacic, A.,Fincher, G. B., and Stone, B. A., eds) Academic Press, Orlando,Fleming, C. pp5–46.

  3. Zhang, B., Liu, Y., Yang, H., Yan, Q., Yang, S., Jiang, Z. Q., & Li, S. (2017). Biochemical properties and application of a novel beta-1,3-1,4-glucanase from Paenibacillus barengoltzii. Food Chemistry, 234, 68–75.

    CAS  Google Scholar 

  4. Hung, Y. L., Chen, H. J., Liu, J. C., & Chen, Y. C. (2012). Catalytic efficiency diversification of duplicate beta-1,3-1,4-glucanases from Neocallimastix patriciarum J11. Applied and Environmental Microbiology, 78(12), 4294–4300.

    CAS  Google Scholar 

  5. Delp, G., & Palva, E. T. (1999). A novel flower-specific Arabidopsis gene related to both pathogen-induced and developmentally regulated plant beta-1,3-glucanase genes. Plant Molecular Biology, 39(3), 565–575.

    CAS  Google Scholar 

  6. Linton, S. M., Cameron, M. S., Gray, M. C., Donald, J. A., Saborowski, R., von Bergen, M., Tomm, J. M., & Allardyce, B. J. (2015). A glycosyl hydrolase family 16 gene is responsible for the endogenous production of beta-1,3-glucanases within decapod crustaceans. Gene., 569(2), 203–217.

    CAS  Google Scholar 

  7. Zakharenko, A. M., Kusaykin, M. I., Kovalchuk, S. N., Anastyuk, S. D., Ly, B. M., Sova, V. V., Rasskazov, V. A., & Zvyagintseva, T. N. (2011). Enzymatic and molecular characterization of an endo-1,3-beta-d-glucanase from the crystalline styles of the mussel Perna viridis. Carbohydrate Research, 346(2), 243–252.

    CAS  Google Scholar 

  8. Meng, D. D., Wang, B., Ma, X. Q., Ji, S. Q., Lu, M., & Li, F. L. (2016). Characterization of a thermostable endo-1,3(4)-beta-glucanase from Caldicellulosiruptor sp. strain F32 and its application for yeast lysis. Applied Microbiology and Biotechnology, 100(11), 4923–4934.

    CAS  Google Scholar 

  9. Yang, S. Q., Xiong, H., Yang, H. Y., Yan, Q. J., & Jiang, Z. Q. (2015). High-level production of beta-1,3-1,4-glucanase by Rhizomucor miehei under solid-state fermentation and its potential application in the brewing industry. Journal of Applied Microbiology, 118(1), 84–91.

    CAS  Google Scholar 

  10. Chaari, F., & Chaabouni, S. E. (2019). Fungal beta-1,3-1,4-glucanases: production, proprieties and biotechnological applications. Journal of the Science of Food and Agriculture, 99(6), 2657–2664.

    CAS  Google Scholar 

  11. Wojtkowiak, A., Witek, K., Hennig, J., & Jaskolski, M. (2013). Structures of an active-site mutant of a plant 1,3-beta-glucanase in complex with oligosaccharide products of hydrolysis. Acta Crystallographica. Section D, Biological Crystallography, 69(Pt 1), 52–62.

    CAS  Google Scholar 

  12. Wan, L., Zha, W., Cheng, X., Liu, C., Lv, L., Liu, C., Wang, Z., Du, B., Chen, R., Zhu, L., & He, G. (2011). A rice beta-1,3-glucanase gene Osg1 is required for callose degradation in pollen development. Planta., 233(2), 309–323.

    CAS  Google Scholar 

  13. Schaeffer, H. J., Leykam, J., & Walton, J. D. (1994). Cloning and targeted gene disruption of EXG1, encoding exo-beta 1, 3-glucanase, in the phytopathogenic fungus Cochliobolus carbonum. Applied and Environmental Microbiology, 60(2), 594–598.

    CAS  Google Scholar 

  14. Souza, R. S., Diaz-Albiter, H. M., Dillon, V. M., Dillon, R. J., & Genta, F. A. (2016). Digestion of yeasts and beta-1,3-glucanases in mosquito larvae: physiological and biochemical considerations. Plos One, 11(3), e0151403.

    Google Scholar 

  15. Pauchet, Y., Freitak, D., Heidel-Fischer, H. M., Heckel, D. G., & Vogel, H. (2009). Immunity or digestion: glucanase activity in a glucan-binding protein family from Lepidoptera. The Journal of Biological Chemistry, 284(4), 2214–2224.

    CAS  Google Scholar 

  16. Hamilton, C., Lay, F., & Bulmer, M. S. (2011). Subterranean termite prophylactic secretions and external antifungal defenses. Journal of Insect Physiology, 57(9), 1259–1266.

    CAS  Google Scholar 

  17. Linton, S. M. (2020). Review: The structure and function of cellulase (endo-beta-1,4-glucanase) and hemicellulase (beta-1,3-glucanase and endo-beta-1,4-mannase) enzymes in invertebrates that consume materials ranging from microbes, algae to leaf litter. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 240, 110354.

    CAS  Google Scholar 

  18. Waldron, R., McGowan, J., Gordon, N., Mitchell, E. B., Fitzpatrick, D. A., & Doyle, S. (2019). Characterisation of three novel beta-1,3 glucanases from the medically important house dust mite Dermatophagoides pteronyssinus (airmid). Insect Biochemistry and Molecular Biology, 115, 103242.

    CAS  Google Scholar 

  19. Souza, R. S., Gama, M., Schama, R., Lima, J. B. P., Diaz-Albiter, H. M., & Genta, F. A. (2019). Biochemical and functional characterization of glycoside hydrolase family 16 genes in Aedes aegypti larvae: identification of the major digestive beta-1,3-glucanase. Frontiers in Physiology, 10, 122.

    Google Scholar 

  20. Lee, H., Kwon, H. M., Park, J. W., Kurokawa, K., & Lee, B. L. (2009). N-terminal GNBP homology domain of Gram-negative binding protein 3 functions as a beta-1,3-glucan binding motif in Tenebrio molitor. BMB Reports, 42(8), 506–510.

    CAS  Google Scholar 

  21. Fabrick, J. A., Baker, J. E., & Kanost, M. R. (2003). cDNA cloning, purification, properties, and function of a beta-1,3-glucan recognition protein from a pyralid moth, Plodia interpunctella. Insect Biochemistry and Molecular Biology, 33(6), 579–594.

    CAS  Google Scholar 

  22. Bragatto, I., Genta, F. A., Ribeiro, A. F., Terra, W. R., & Ferreira, C. (2010). Characterization of a beta-1,3-glucanase active in the alkaline midgut of Spodoptera frugiperda larvae and its relation to beta-glucan-binding proteins. Insect Biochemistry and Molecular Biology, 40(12), 861–872.

    CAS  Google Scholar 

  23. Genta, F. A., Bragatto, I., Terra, W. R., & Ferreira, C. (2009). Purification, characterization and sequencing of the major beta-1,3-glucanase from the midgut of Tenebrio molitor larvae. Insect Biochemistry and Molecular Biology, 39(12), 861–874.

    CAS  Google Scholar 

  24. Kikuchi, T., Shibuya, H., & Jones, J. T. (2005). Molecular and biochemical characterization of an endo-beta-1,3-glucanase from the pinewood nematode Bursaphelenchus xylophilus acquired by horizontal gene transfer from bacteria. The Biochemical Journal, 389(Pt 1), 117–125.

    CAS  Google Scholar 

  25. Romero Victorica, M., Soria, M. A., Batista-Garcia, R. A., Ceja-Navarro, J. A., Vikram, S., Ortiz, M., Ontanon, O., Ghio, S., Martinez-Avila, L., Quintero Garcia, O. J., Etcheverry, C., Campos, E., Cowan, D., Arneodo, J., & Talia, P. M. (2020). Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes. Scientific Reports, 10(1), 3864.

    CAS  Google Scholar 

  26. Ni, J., & Tokuda, G. (2013). Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnology Advances, 31(6), 838–850.

    CAS  Google Scholar 

  27. Brune, A. (2014). Symbiotic digestion of lignocellulose in termite guts. Nature Reviews. Microbiology, 12(3), 168–180.

    CAS  Google Scholar 

  28. Javadzadeh, S. G., & Asoodeh, A. (2020). A novel textile dye degrading extracellular laccase from symbiotic bacterium of Bacillus sp. CF96 isolated from gut termite (Anacanthotermes). International Journal of Biological Macromolecules, 145, 355–363.

    CAS  Google Scholar 

  29. Otani, S., Challinor, V. L., Kreuzenbeck, N. B., Kildgaard, S., Krath Christensen, S., Larsen, L. L. M., Aanen, D. K., Rasmussen, S. A., Beemelmanns, C., & Poulsen, M. (2019). Disease-free monoculture farming by fungus-growing termites. Scientific Reports, 9(1), 8819.

    Google Scholar 

  30. Aanen, D. K., Eggleton, P., Rouland-Lefevre, C., Guldberg-Froslev, T., Rosendahl, S., & Boomsma, J. J. (2002). The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proceedings of the National Academy of Sciences of the United States of America, 99(23), 14887–14892.

    CAS  Google Scholar 

  31. Rosengaus, R. B., Schultheis, K. F., Yalonetskaya, A., Bulmer, M. S., DuComb, W. S., Benson, R. W., Thottam, J. P., & Godoy-Carter, V. (2014). Symbiont-derived beta-1,3-glucanases in a social insect: mutualism beyond nutrition. Frontiers in Microbiology, 5607.

  32. Li, H., Yelle, D. J., Li, C., Yang, M., Ke, J., Zhang, R., Liu, Y., Zhu, N., Liang, S., Mo, X., Ralph, J., Currie, C. R., & Mo, J. (2017). Lignocellulose pretreatment in a fungus-cultivating termite. Proceedings of the National Academy of Sciences of the United States of America, 114(18), 4709–4714.

    CAS  Google Scholar 

  33. Wu, Y., Chi, S., Yun, C., Shen, Y., Tokuda, G., & Ni, J. (2012). Molecular cloning and characterization of an endogenous digestive beta-glucosidase from the midgut of the fungus-growing termite Macrotermes barneyi. Insect Molecular Biology, 21(6), 604–614.

    Google Scholar 

  34. Juncosa, M., Pons, J., Dot, T., Querol, E., & Planas, A. (1994). Identification of active site carboxylic residues in Bacillus licheniformis 1,3-1,4-beta-D-glucan 4-glucanohydrolase by site-directed mutagenesis. The Journal of Biological Chemistry, 269(20), 14530–14535.

    CAS  Google Scholar 

  35. Genta, F. A., Terra, W. R., & Ferreira, C. (2003). Action pattern, specificity, lytic activities, and physiological role of five digestive beta-glucanases isolated from Periplaneta americana. Insect Biochemistry and Molecular Biology, 33(11), 1085–1097.

    CAS  Google Scholar 

  36. Fuchs, K. P., Zverlov, V. V., Velikodvorskaya, G. A., Lottspeich, F., & Schwarz, W. H. (2003). Lic16A of Clostridium thermocellum, a non-cellulosomal, highly complex endo-beta-1,3-glucanase bound to the outer cell surface. Microbiology., 149(Pt 4), 1021–1031.

    CAS  Google Scholar 

  37. Wang, J., Kang, L., Liu, Z., & Yuan, S. (2017). Gene cloning, heterologous expression and characterization of a Coprinopsis cinerea endo-beta-1,3(4)-glucanase. Fungal Biology, 121(1), 61–68.

    CAS  Google Scholar 

  38. Genta, F. A., Dumont, A. F., Marana, S. R., Terra, W. R., & Ferreira, C. (2007). The interplay of processivity, substrate inhibition and a secondary substrate binding site of an insect exo-beta-1,3-glucanase. Biochimica et Biophysica Acta, 1774(9), 1079–1091.

    CAS  Google Scholar 

  39. Kumagai, Y., & Ojima, T. (2010). Isolation and characterization of two types of beta-1,3-glucanases from the common sea hare Aplysia kurodai. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 155(2), 138–144.

    Google Scholar 

  40. Kumagai, Y., & Ojima, T. (2009). Enzymatic properties and the primary structure of a beta-1,3-glucanase from the digestive fluid of the Pacific abalone Haliotis discus hannai. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 154(1), 113–120.

    Google Scholar 

  41. De Sousa, G., Dos Santos, V. C., de Figueiredo Gontijo, N., Constantino, R., de Oliveira Paiva, E. S. G., Bahia, A. C., Gomes, F. M., & de Alcantara Machado, E. (2017). Morphophysiological study of digestive system litter-feeding termite Cornitermes cumulans (Kollar, 1832). Cell and Tissue Research, 368(3), 579–590.

    Google Scholar 

  42. Ni, J., Wu, Y., Yun, C., Yu, M., & Shen, Y. (2014). cDNA cloning and heterologous expression of an endo-beta-1,4-glucanase from the fungus-growing termite Macrotermes barneyi. Archives of Insect Biochemistry and Physiology, 86(3), 151–164.

    CAS  Google Scholar 

  43. Javaheri-Kermani, M., & Asoodeh, A. (2019). A novel beta-1,4 glucanase produced by symbiotic Bacillus sp. CF96 isolated from termite (Anacanthotermes). International Journal of Biological Macromolecules, 131, 752–759.

    CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant Nos. 31970119 and 31272370).

Author information

Authors and Affiliations

Authors

Contributions

The experiment was designed and performed by Chunjing Cao and Jingjing Li. The data was analyzed by Jingjing Li, Chunjing Cao, and Yutong Jiang. The first draft of the manuscript was written by Chunjing Cao, Jingjing Li, and Jinfeng Ni. The manuscript was reviewed and edited by Qihong Huang, Yulong Shen, and Jinfeng Ni. All authors commented on previous versions of the manuscript. All authors had read and approved the final manuscript.

Corresponding authors

Correspondence to Yulong Shen or Jinfeng Ni.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Cao, C., Jiang, Y. et al. A Novel Digestive GH16 β-1,3(4)-Glucanase from the Fungus-Growing Termite Macrotermes barneyi. Appl Biochem Biotechnol 192, 1284–1297 (2020). https://doi.org/10.1007/s12010-020-03368-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03368-w

Keywords

Navigation